Pair correlation of real-valued vector sequences

Sneha Chaubey, Shivani Goel
{"title":"Pair correlation of real-valued vector sequences","authors":"Sneha Chaubey, Shivani Goel","doi":"10.1007/s00605-024-01946-2","DOIUrl":null,"url":null,"abstract":"<p>In this article, we investigate the fine-scale statistics of real-valued arithmetic sequences. In particular, we focus on real-valued vector sequences, generalizing previous works of Boca et al. and the first author on the local statistics of integer-valued and rational-valued vector sequences, respectively. As the main results, we prove the Poissonian behavior of the pair correlation function for certain classes of real-valued vector sequences. This is achieved by extrapolating conditions on the number of solutions of Diophantine inequalities using twisted moments of the Riemann zeta function. Later, we give concrete examples of sequences in this set-up where these conditions are satisfied.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01946-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we investigate the fine-scale statistics of real-valued arithmetic sequences. In particular, we focus on real-valued vector sequences, generalizing previous works of Boca et al. and the first author on the local statistics of integer-valued and rational-valued vector sequences, respectively. As the main results, we prove the Poissonian behavior of the pair correlation function for certain classes of real-valued vector sequences. This is achieved by extrapolating conditions on the number of solutions of Diophantine inequalities using twisted moments of the Riemann zeta function. Later, we give concrete examples of sequences in this set-up where these conditions are satisfied.

实值向量序列的成对相关性
在本文中,我们研究了实值算术序列的微尺度统计。我们特别关注实值向量数列,概括了 Boca 等人和第一作者之前分别关于整数值向量数列和有理值向量数列局部统计的研究成果。作为主要结果,我们证明了某些类别的实值向量序列的对相关函数的泊松行为。这是通过利用黎曼zeta函数的扭曲矩推断 Diophantine 不等式解的数量条件实现的。稍后,我们将给出满足这些条件的序列的具体例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信