Zero-filter limit issue for the Camassa–Holm equation in Besov spaces

Yuxing Cheng, Jianzhong Lu, Min Li, Xing Wu, Jinlu Li
{"title":"Zero-filter limit issue for the Camassa–Holm equation in Besov spaces","authors":"Yuxing Cheng, Jianzhong Lu, Min Li, Xing Wu, Jinlu Li","doi":"10.1007/s00605-024-01944-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we focus on zero-filter limit problem for the Camassa-Holm equation in the more general Besov spaces. We prove that the solution of the Camassa-Holm equation converges strongly in <span>\\(L^\\infty (0,T;B^s_{2,r}(\\mathbb {R}))\\)</span> to the inviscid Burgers equation as the filter parameter <span>\\(\\alpha \\)</span> tends to zero with the given initial data <span>\\(u_0\\in B^s_{2,r}(\\mathbb {R})\\)</span>. Moreover, we also show that the zero-filter limit for the Camassa-Holm equation does not converges uniformly with respect to the initial data in <span>\\(B^s_{2,r}(\\mathbb {R})\\)</span>.\n</p>","PeriodicalId":18913,"journal":{"name":"Monatshefte für Mathematik","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monatshefte für Mathematik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00605-024-01944-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we focus on zero-filter limit problem for the Camassa-Holm equation in the more general Besov spaces. We prove that the solution of the Camassa-Holm equation converges strongly in \(L^\infty (0,T;B^s_{2,r}(\mathbb {R}))\) to the inviscid Burgers equation as the filter parameter \(\alpha \) tends to zero with the given initial data \(u_0\in B^s_{2,r}(\mathbb {R})\). Moreover, we also show that the zero-filter limit for the Camassa-Holm equation does not converges uniformly with respect to the initial data in \(B^s_{2,r}(\mathbb {R})\).

贝索夫空间中卡马萨-霍尔姆方程的零滤波极限问题
在本文中,我们重点研究了卡马萨-霍尔姆方程在更一般的贝索夫空间中的零滤波极限问题。我们证明,在给定初始数据\(u_0\in B^s_{2,r}(\mathbb {R})\)的情况下,当滤波参数\(\alpha \)趋于零时,卡马萨-霍姆方程的解在\(L^\infty (0,T;B^s_{2,r}(\mathbb {R})\)中强烈收敛于不粘性布尔格斯方程。)此外,我们还证明了卡马萨-霍尔姆方程的零滤波极限不会均匀地收敛于 \(B^s_{2,r}(\mathbb {R})\) 中的初始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信