{"title":"Evaluating the effectiveness of Bat optimization in an adaptive and energy-efficient network-on-chip routing framework","authors":"B. Naresh Kumar Reddy , Aruru Sai Kumar","doi":"10.1016/j.jpdc.2024.104853","DOIUrl":null,"url":null,"abstract":"<div><p>Adaptive routing is effective in maintaining higher processor performance and avoids packets over minimal or non-minimal alternate routes without congestion for a multiprocessor system on chip. However, many systems cannot deal with the fact that sending packets over an alternative path rather than the shorter, fixed-priority route can result in packets arriving at the destination node out of order. This can occur if packets belonging to the same communication flow are adaptively routed through a different path. In real-world network systems, there are strategies and algorithms to efficiently handle out-of-order packets without requiring infinite memory. Techniques like buffering, sliding windows, and sequence number management are used to reorder packets while considering the practical constraints of available memory and processing power. The specific method used depends on the network protocol and the requirements of the application. In the proposed technique, a novel technique aimed at improving the performance of multiprocessor systems on chip by implementing adaptive routing based on the Bat algorithm. The framework employs 5 stage pipeline router, that completely gained and forward a packet at the perfect direction in an adaptive mode. Bat algorithm is used to enhance the performance, which can optimize route to transmit packets at the destination. A test was carried out on various NoC sizes (6 X 6 and 8 X 8) under multimedia benchmarks, compared with other related algorithms and implemented on Kintex-7 FPGA board. The outcomes of the simulation illustrate that the proposed algorithm reduces delay and improves the throughput over the other traditional adaptive algorithms.</p></div>","PeriodicalId":54775,"journal":{"name":"Journal of Parallel and Distributed Computing","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parallel and Distributed Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0743731524000170","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptive routing is effective in maintaining higher processor performance and avoids packets over minimal or non-minimal alternate routes without congestion for a multiprocessor system on chip. However, many systems cannot deal with the fact that sending packets over an alternative path rather than the shorter, fixed-priority route can result in packets arriving at the destination node out of order. This can occur if packets belonging to the same communication flow are adaptively routed through a different path. In real-world network systems, there are strategies and algorithms to efficiently handle out-of-order packets without requiring infinite memory. Techniques like buffering, sliding windows, and sequence number management are used to reorder packets while considering the practical constraints of available memory and processing power. The specific method used depends on the network protocol and the requirements of the application. In the proposed technique, a novel technique aimed at improving the performance of multiprocessor systems on chip by implementing adaptive routing based on the Bat algorithm. The framework employs 5 stage pipeline router, that completely gained and forward a packet at the perfect direction in an adaptive mode. Bat algorithm is used to enhance the performance, which can optimize route to transmit packets at the destination. A test was carried out on various NoC sizes (6 X 6 and 8 X 8) under multimedia benchmarks, compared with other related algorithms and implemented on Kintex-7 FPGA board. The outcomes of the simulation illustrate that the proposed algorithm reduces delay and improves the throughput over the other traditional adaptive algorithms.
期刊介绍:
This international journal is directed to researchers, engineers, educators, managers, programmers, and users of computers who have particular interests in parallel processing and/or distributed computing.
The Journal of Parallel and Distributed Computing publishes original research papers and timely review articles on the theory, design, evaluation, and use of parallel and/or distributed computing systems. The journal also features special issues on these topics; again covering the full range from the design to the use of our targeted systems.