On definable groups and D-groups in certain fields with a generic derivation

Ya’acov Peterzil, Anand Pillay, Françoise Point
{"title":"On definable groups and D-groups in certain fields with a generic derivation","authors":"Ya’acov Peterzil, Anand Pillay, Françoise Point","doi":"10.4153/s0008414x24000063","DOIUrl":null,"url":null,"abstract":"<p>We continue our study from Peterzil et al. (2022, <span>Preprint</span>, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$T_{\\partial }$</span></span></img></span></span>, the model companion of an o-minimal <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline2.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-theory <span>T</span> expanded by a generic derivation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\partial $</span></span></img></span></span> as in Fornasiero and Kaplan (2021, <span>Journal of Mathematical Logic</span> 21, 2150007).</p><p>We generalize Buium’s notion of an algebraic <span>D</span>-group to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline4.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-definable <span>D</span>-groups, namely <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(G,s)$</span></span></img></span></span>, where <span>G</span> is an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline6.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-definable group in a model of <span>T</span>, and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$s:G\\to \\tau (G)$</span></span></img></span></span> is an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-definable group section. Our main theorem says that every definable group of finite dimension in a model of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$T_\\partial $</span></span></img></span></span> is definably isomorphic to a group of the form <span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_eqnu1.png\"><span data-mathjax-type=\"texmath\"><span>$$ \\begin{align*}(G,s)^\\partial=\\{g\\in G:s(g)=\\nabla g\\},\\end{align*} $$</span></span></img></span></p><p>for some <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline10.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathcal {L}}$</span></span></img></span></span>-definable <span>D</span>-group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$(G,s)$</span></span></img></span></span> (where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$\\nabla (g)=(g,\\partial g)$</span></span></img></span></span>).</p><p>We obtain analogous results when <span>T</span> is either the theory of <span>p</span>-adically closed fields or the theory of pseudo-finite fields of characteristic <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240202124840300-0805:S0008414X24000063:S0008414X24000063_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$0$</span></span></img></span></span>.</p>","PeriodicalId":501820,"journal":{"name":"Canadian Journal of Mathematics","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4153/s0008414x24000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We continue our study from Peterzil et al. (2022, Preprint, arXiv:2208.08293) of finite-dimensional definable groups in models of the theory Abstract Image$T_{\partial }$, the model companion of an o-minimal Abstract Image${\mathcal {L}}$-theory T expanded by a generic derivation Abstract Image$\partial $ as in Fornasiero and Kaplan (2021, Journal of Mathematical Logic 21, 2150007).

We generalize Buium’s notion of an algebraic D-group to Abstract Image${\mathcal {L}}$-definable D-groups, namely Abstract Image$(G,s)$, where G is an Abstract Image${\mathcal {L}}$-definable group in a model of T, and Abstract Image$s:G\to \tau (G)$ is an Abstract Image${\mathcal {L}}$-definable group section. Our main theorem says that every definable group of finite dimension in a model of Abstract Image$T_\partial $ is definably isomorphic to a group of the form Abstract Image$$ \begin{align*}(G,s)^\partial=\{g\in G:s(g)=\nabla g\},\end{align*} $$

for some Abstract Image${\mathcal {L}}$-definable D-group Abstract Image$(G,s)$ (where Abstract Image$\nabla (g)=(g,\partial g)$).

We obtain analogous results when T is either the theory of p-adically closed fields or the theory of pseudo-finite fields of characteristic Abstract Image$0$.

关于某些域中的可定义群和 D 群的通用推导
我们继续研究彼得齐尔等人(2022,预印本,arXiv:2208.08293)理论模型中的有限维可定义群$T_{\partial }$,即一个o-最小${\mathcal {L}}$理论T的模型同伴,该理论由通用派生$\partial $展开,如福纳西耶罗和卡普兰(2021,《数理逻辑杂志》21,2150007)。我们将布伊姆的代数 D 群概念推广到 ${\mathcal {L}}$ 可定义 D 群,即 $(G,s)$,其中 G 是 T 模型中的 ${mathcal {L}}$ 可定义群,而 $s:G\to \tau (G)$ 是 ${\mathcal {L}}$ 可定义群部分。我们的主要定理指出,在 $T_\partial $ 的模型中,每一个有限维的可定义群都与形式为 $$ \begin{align*}(G,s)^\partial=\{g\in G:s(g)=\nabla g\},\end{align*} 的群同构。对于某个 ${mathcal {L}}$ 定义的 D 群 $(G,s)$(其中 $\nabla (g)=(g,\partial g)$),我们会得到类似的结果。当 T 是 p-adically closed fields 理论或特征 $0$ 的伪无限域理论时,我们会得到类似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信