Molecular dynamics simulation of temperature and concentration distribution at liquid-gas interface during liquid air storage process

Q1 Engineering
Zhanping You , Menghan Cheng , Changjie Ma , Yufei Xiao , Xuemin Zhao , Camila Barreneche , Xiaohui She
{"title":"Molecular dynamics simulation of temperature and concentration distribution at liquid-gas interface during liquid air storage process","authors":"Zhanping You ,&nbsp;Menghan Cheng ,&nbsp;Changjie Ma ,&nbsp;Yufei Xiao ,&nbsp;Xuemin Zhao ,&nbsp;Camila Barreneche ,&nbsp;Xiaohui She","doi":"10.1016/j.enbenv.2024.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>To address global challenge of climate changes, renewable energy has been fully developed in recent years. However, renewable energy is usually intermittent which makes it challenging for application. Liquid air energy storage can effectively store intermittent energy with promising prospects. Liquid air is a mixture composed of N<sub>2</sub>, O<sub>2</sub> and Ar with different evaporation temperatures. It is assumed to form temperature and concentration stratification during storage and thus causes safety challenge. To address this issue, molecular dynamics (MD) simulation method is used to study the temperature and concentration distribution characteristics in liquid air. The results show that the system temperature remains constant at 94 K with no temperature stratification during storage. However, the concentration of liquid air changes along vertical direction (z axis): the oxygen concentration remains stable around 21 % as z is 0–60 Å, rises to 22.1 % as z is from 60 to 70 Å and drops to 0 % as z is above 80 Å. The thin and short stratification phenomenon occurs at the gas-liquid interface region. In addition, a higher heat flux leads to a higher evaporation rate and a larger oxygen concentration. As the heat flux increases from 0.0 to 2.4 W/m<sup>2</sup>, evaporation rate rises from 0.13 to 0.2 % and the oxygen concentration at the liquid-gas interface reaches 22.3 %. Thus, concentration stratification exists during liquid air storage and should be treated carefully. This paper provides an insight into the temperature and concentration distribution of liquid air during storage and is significant for safety improvement and development of liquid air energy storage.</div></div>","PeriodicalId":33659,"journal":{"name":"Energy and Built Environment","volume":"6 3","pages":"Pages 555-563"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666123324000205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

To address global challenge of climate changes, renewable energy has been fully developed in recent years. However, renewable energy is usually intermittent which makes it challenging for application. Liquid air energy storage can effectively store intermittent energy with promising prospects. Liquid air is a mixture composed of N2, O2 and Ar with different evaporation temperatures. It is assumed to form temperature and concentration stratification during storage and thus causes safety challenge. To address this issue, molecular dynamics (MD) simulation method is used to study the temperature and concentration distribution characteristics in liquid air. The results show that the system temperature remains constant at 94 K with no temperature stratification during storage. However, the concentration of liquid air changes along vertical direction (z axis): the oxygen concentration remains stable around 21 % as z is 0–60 Å, rises to 22.1 % as z is from 60 to 70 Å and drops to 0 % as z is above 80 Å. The thin and short stratification phenomenon occurs at the gas-liquid interface region. In addition, a higher heat flux leads to a higher evaporation rate and a larger oxygen concentration. As the heat flux increases from 0.0 to 2.4 W/m2, evaporation rate rises from 0.13 to 0.2 % and the oxygen concentration at the liquid-gas interface reaches 22.3 %. Thus, concentration stratification exists during liquid air storage and should be treated carefully. This paper provides an insight into the temperature and concentration distribution of liquid air during storage and is significant for safety improvement and development of liquid air energy storage.

Abstract Image

液态空气储存过程中液气界面温度和浓度分布的分子动力学模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Built Environment
Energy and Built Environment Engineering-Building and Construction
CiteScore
15.90
自引率
0.00%
发文量
104
审稿时长
49 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信