Contrastive learning for hierarchical topic modeling

Pengbo Mao , Hegang Chen , Yanghui Rao , Haoran Xie , Fu Lee Wang
{"title":"Contrastive learning for hierarchical topic modeling","authors":"Pengbo Mao ,&nbsp;Hegang Chen ,&nbsp;Yanghui Rao ,&nbsp;Haoran Xie ,&nbsp;Fu Lee Wang","doi":"10.1016/j.nlp.2024.100058","DOIUrl":null,"url":null,"abstract":"<div><p>Topic models have been widely used in automatic topic discovery from text corpora, for which, the external linguistic knowledge contained in Pre-trained Word Embeddings (PWEs) is valuable. However, the existing Neural Topic Models (NTMs), particularly Variational Auto-Encoder (VAE)-based NTMs, suffer from incorporating such external linguistic knowledge, and lacking of both accurate and efficient inference methods for approximating the intractable posterior. Furthermore, most existing topic models learn topics with a flat structure or organize them into a tree with only one root node. To tackle these limitations, we propose a new framework called as Contrastive Learning for Hierarchical Topic Modeling (CLHTM), which can efficiently mine hierarchical topics based on inputs of PWEs and Bag-of-Words (BoW). Experiments show that our model can automatically mine hierarchical topic structures, and have a better performance than the baseline models in terms of topic hierarchical rationality and flexibility.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"6 ","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000062/pdfft?md5=d909815a7127e4a5c22593827037ec98&pid=1-s2.0-S2949719124000062-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Topic models have been widely used in automatic topic discovery from text corpora, for which, the external linguistic knowledge contained in Pre-trained Word Embeddings (PWEs) is valuable. However, the existing Neural Topic Models (NTMs), particularly Variational Auto-Encoder (VAE)-based NTMs, suffer from incorporating such external linguistic knowledge, and lacking of both accurate and efficient inference methods for approximating the intractable posterior. Furthermore, most existing topic models learn topics with a flat structure or organize them into a tree with only one root node. To tackle these limitations, we propose a new framework called as Contrastive Learning for Hierarchical Topic Modeling (CLHTM), which can efficiently mine hierarchical topics based on inputs of PWEs and Bag-of-Words (BoW). Experiments show that our model can automatically mine hierarchical topic structures, and have a better performance than the baseline models in terms of topic hierarchical rationality and flexibility.

分层主题建模的对比学习
主题模型已被广泛应用于从文本语料库中自动发现主题,预训练词嵌入(PWE)中包含的外部语言知识对发现主题非常有价值。然而,现有的神经主题模型(NTMs),尤其是基于变异自动编码器(VAE)的 NTMs,在整合这些外部语言知识方面存在问题,而且缺乏准确高效的推理方法来逼近难以解决的后验问题。此外,大多数现有的主题模型都是以扁平结构学习主题,或者将主题组织成一棵只有一个根节点的树。为了解决这些局限性,我们提出了一个名为 "分层主题建模对比学习(CLHTM)"的新框架,它可以根据输入的 PWE 和词袋(BoW)有效地挖掘分层主题。实验表明,我们的模型可以自动挖掘分层主题结构,并且在主题分层合理性和灵活性方面比基线模型有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信