Stochastic controls of fractional Brownian motion

IF 0.3 Q4 STATISTICS & PROBABILITY
Ikram Hamed, A. Chala
{"title":"Stochastic controls of fractional Brownian motion","authors":"Ikram Hamed, A. Chala","doi":"10.1515/rose-2023-2025","DOIUrl":null,"url":null,"abstract":"\n We consider a stochastic control problem for a non-linear forward-backward stochastic differential equation driven by fractional Brownian motion, with Hurst parameter \n \n \n \n H\n ∈\n \n (\n 0\n ,\n 1\n )\n \n \n \n \n {H\\in(0,1)}\n \n , in the case where the set of the control domain is convex. We provide an estimation of the solution and establish the necessary and sufficient optimality conditions in the form of the stochastic maximum principle.\nWe apply the theory to solve a linear quadratic stochastic control problem.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2023-2025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a stochastic control problem for a non-linear forward-backward stochastic differential equation driven by fractional Brownian motion, with Hurst parameter H ∈ ( 0 , 1 ) {H\in(0,1)} , in the case where the set of the control domain is convex. We provide an estimation of the solution and establish the necessary and sufficient optimality conditions in the form of the stochastic maximum principle. We apply the theory to solve a linear quadratic stochastic control problem.
分数布朗运动的随机控制
我们考虑了一个由分数布朗运动驱动的非线性前向后向随机微分方程的随机控制问题,该微分方程的赫斯特参数 H∈ ( 0 , 1 ) {H\in(0,1)},在控制域集合为凸的情况下。我们提供了解的估计,并以随机最大原则的形式建立了必要和充分的最优条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信