Joy Dewanjee, Md Shabiul Islam, Wong Hin Yong, Najeeb Ullah, K. Siddiquee, Mohammad Tariqul Islam
{"title":"Investigation on battery-less voltage of piezoelectric V-shape cantilever beam energy harvester using FEA method for pacemaker","authors":"Joy Dewanjee, Md Shabiul Islam, Wong Hin Yong, Najeeb Ullah, K. Siddiquee, Mohammad Tariqul Islam","doi":"10.1556/1848.2023.00759","DOIUrl":null,"url":null,"abstract":"This paper presents an investigation on a battery-less voltage of Piezoelectric (PZT) V-shape cantilever beam Energy Harvester (EH) using human body vibration. The frequency ranges are walking (0–5 Hz), running (6–10 Hz) and motions (11–15 Hz) for human movement. Pacemaker devices typically require a lower resonant frequency with higher voltage which is powered by batteries. The battery has a limited duration during its working process and the battery is difficult to replace in the human body. To address the aforementioned issue, a V-shape cantilever beam EH has been developed as a solution to overcome these limitations. The cantilever beam was designed in COMSOL Multiphysics software 5.5 version using the Finite Element Analysis (FEA) method for experimental investigations followed by three categories of frequency ranges of the human body. The simulation results showed that the generated battery-less higher voltage was 269 mV (AC) at the resonant frequency of 14.37 Hz in the motion range of 11–15 Hz. Later, an Ultra Low Power (ULP) electronic circuits will be designed and simulated in the LTSPICE software to convert and boost-up from 269 mV (AC) to DC voltage attained. The estimated output power of the energy harvester system can be powered up (4.7 µW) for modern pacemaker applications.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":"8 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an investigation on a battery-less voltage of Piezoelectric (PZT) V-shape cantilever beam Energy Harvester (EH) using human body vibration. The frequency ranges are walking (0–5 Hz), running (6–10 Hz) and motions (11–15 Hz) for human movement. Pacemaker devices typically require a lower resonant frequency with higher voltage which is powered by batteries. The battery has a limited duration during its working process and the battery is difficult to replace in the human body. To address the aforementioned issue, a V-shape cantilever beam EH has been developed as a solution to overcome these limitations. The cantilever beam was designed in COMSOL Multiphysics software 5.5 version using the Finite Element Analysis (FEA) method for experimental investigations followed by three categories of frequency ranges of the human body. The simulation results showed that the generated battery-less higher voltage was 269 mV (AC) at the resonant frequency of 14.37 Hz in the motion range of 11–15 Hz. Later, an Ultra Low Power (ULP) electronic circuits will be designed and simulated in the LTSPICE software to convert and boost-up from 269 mV (AC) to DC voltage attained. The estimated output power of the energy harvester system can be powered up (4.7 µW) for modern pacemaker applications.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.