Convexity, Elementary Methods, and Distances

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Oliver Roche-Newton, Dmitrii Zhelezov
{"title":"Convexity, Elementary Methods, and Distances","authors":"Oliver Roche-Newton, Dmitrii Zhelezov","doi":"10.1007/s00454-023-00625-7","DOIUrl":null,"url":null,"abstract":"<p>This paper considers an extremal version of the Erdős distinct distances problem. For a point set <span>\\(P \\subset {\\mathbb {R}}^d\\)</span>, let <span>\\(\\Delta (P)\\)</span> denote the set of all Euclidean distances determined by <i>P</i>. Our main result is the following: if <span>\\(\\Delta (A^d) \\ll |A|^2\\)</span> and <span>\\(d \\ge 5\\)</span>, then there exists <span>\\(A' \\subset A\\)</span> with <span>\\(|A'| \\ge |A|/2\\)</span> such that <span>\\(|A'-A'| \\ll |A| \\log |A|\\)</span>. This is one part of a more general result, which says that, if the growth of <span>\\(|\\Delta (A^d)|\\)</span> is restricted, it must be the case that <i>A</i> has some additive structure. More specifically, for any two integers <i>k</i>, <i>n</i>, we have the following information: if </p><span>$$\\begin{aligned} | \\Delta (A^{2k+3})| \\le |A|^n \\end{aligned}$$</span><p>then there exists <span>\\(A' \\subset A\\)</span> with <span>\\(|A'| \\ge |A|/2\\)</span> and </p><span>$$\\begin{aligned} | kA'- kA'| \\le k^2|A|^{2n-3}\\log |A|. \\end{aligned}$$</span><p>These results are higher dimensional analogues of a result of Hanson [4], who considered the two-dimensional case.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"209 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00625-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers an extremal version of the Erdős distinct distances problem. For a point set \(P \subset {\mathbb {R}}^d\), let \(\Delta (P)\) denote the set of all Euclidean distances determined by P. Our main result is the following: if \(\Delta (A^d) \ll |A|^2\) and \(d \ge 5\), then there exists \(A' \subset A\) with \(|A'| \ge |A|/2\) such that \(|A'-A'| \ll |A| \log |A|\). This is one part of a more general result, which says that, if the growth of \(|\Delta (A^d)|\) is restricted, it must be the case that A has some additive structure. More specifically, for any two integers kn, we have the following information: if

$$\begin{aligned} | \Delta (A^{2k+3})| \le |A|^n \end{aligned}$$

then there exists \(A' \subset A\) with \(|A'| \ge |A|/2\) and

$$\begin{aligned} | kA'- kA'| \le k^2|A|^{2n-3}\log |A|. \end{aligned}$$

These results are higher dimensional analogues of a result of Hanson [4], who considered the two-dimensional case.

凸性、初等方法和距离
本文研究的是厄尔多斯显著距离问题的极值版本。对于一个点集 \(P \subset {\mathbb {R}}^d\), 让 \(\Delta (P)\) 表示由 P 决定的所有欧氏距离的集合。我们的主要结果如下:如果 \(\Delta (A^d) \ll |A|^2\) and \(d \ge 5\), 那么存在 \(A' \subset A\) with \(|A'| \ge |A|/2\) such that \(|A'-A'|ll \A| \log |A|\)。这是一个更普遍的结果的一部分,它说:如果 \(|\Delta (A^d)|\) 的增长受到限制,那么 A 一定具有某种加法结构。更具体地说,对于任意两个整数 k、n,我们有如下信息:如果 $$\begin{aligned}| Delta (A^{2k+3})| |le |A|^n \end{aligned}$$那么存在 \(A' \subset A\) with \(|A'| ge |A|/2\) 和 $$\begin{aligned}| kA'- kA'| \le k^2|A|^{2n-3}\log |A|。\end{aligned}$$这些结果是汉森[4]结果的高维类似物,汉森考虑的是二维情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信