Convexity, Elementary Methods, and Distances

Pub Date : 2024-02-03 DOI:10.1007/s00454-023-00625-7
Oliver Roche-Newton, Dmitrii Zhelezov
{"title":"Convexity, Elementary Methods, and Distances","authors":"Oliver Roche-Newton, Dmitrii Zhelezov","doi":"10.1007/s00454-023-00625-7","DOIUrl":null,"url":null,"abstract":"<p>This paper considers an extremal version of the Erdős distinct distances problem. For a point set <span>\\(P \\subset {\\mathbb {R}}^d\\)</span>, let <span>\\(\\Delta (P)\\)</span> denote the set of all Euclidean distances determined by <i>P</i>. Our main result is the following: if <span>\\(\\Delta (A^d) \\ll |A|^2\\)</span> and <span>\\(d \\ge 5\\)</span>, then there exists <span>\\(A' \\subset A\\)</span> with <span>\\(|A'| \\ge |A|/2\\)</span> such that <span>\\(|A'-A'| \\ll |A| \\log |A|\\)</span>. This is one part of a more general result, which says that, if the growth of <span>\\(|\\Delta (A^d)|\\)</span> is restricted, it must be the case that <i>A</i> has some additive structure. More specifically, for any two integers <i>k</i>, <i>n</i>, we have the following information: if </p><span>$$\\begin{aligned} | \\Delta (A^{2k+3})| \\le |A|^n \\end{aligned}$$</span><p>then there exists <span>\\(A' \\subset A\\)</span> with <span>\\(|A'| \\ge |A|/2\\)</span> and </p><span>$$\\begin{aligned} | kA'- kA'| \\le k^2|A|^{2n-3}\\log |A|. \\end{aligned}$$</span><p>These results are higher dimensional analogues of a result of Hanson [4], who considered the two-dimensional case.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-023-00625-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers an extremal version of the Erdős distinct distances problem. For a point set \(P \subset {\mathbb {R}}^d\), let \(\Delta (P)\) denote the set of all Euclidean distances determined by P. Our main result is the following: if \(\Delta (A^d) \ll |A|^2\) and \(d \ge 5\), then there exists \(A' \subset A\) with \(|A'| \ge |A|/2\) such that \(|A'-A'| \ll |A| \log |A|\). This is one part of a more general result, which says that, if the growth of \(|\Delta (A^d)|\) is restricted, it must be the case that A has some additive structure. More specifically, for any two integers kn, we have the following information: if

$$\begin{aligned} | \Delta (A^{2k+3})| \le |A|^n \end{aligned}$$

then there exists \(A' \subset A\) with \(|A'| \ge |A|/2\) and

$$\begin{aligned} | kA'- kA'| \le k^2|A|^{2n-3}\log |A|. \end{aligned}$$

These results are higher dimensional analogues of a result of Hanson [4], who considered the two-dimensional case.

分享
查看原文
凸性、初等方法和距离
本文研究的是厄尔多斯显著距离问题的极值版本。对于一个点集 \(P \subset {\mathbb {R}}^d\), 让 \(\Delta (P)\) 表示由 P 决定的所有欧氏距离的集合。我们的主要结果如下:如果 \(\Delta (A^d) \ll |A|^2\) and \(d \ge 5\), 那么存在 \(A' \subset A\) with \(|A'| \ge |A|/2\) such that \(|A'-A'|ll \A| \log |A|\)。这是一个更普遍的结果的一部分,它说:如果 \(|\Delta (A^d)|\) 的增长受到限制,那么 A 一定具有某种加法结构。更具体地说,对于任意两个整数 k、n,我们有如下信息:如果 $$\begin{aligned}| Delta (A^{2k+3})| |le |A|^n \end{aligned}$$那么存在 \(A' \subset A\) with \(|A'| ge |A|/2\) 和 $$\begin{aligned}| kA'- kA'| \le k^2|A|^{2n-3}\log |A|。\end{aligned}$$这些结果是汉森[4]结果的高维类似物,汉森考虑的是二维情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信