L1 Regularization for High-Dimensional Multivariate GARCH Models

IF 2 Q2 BUSINESS, FINANCE
Risks Pub Date : 2024-02-04 DOI:10.3390/risks12020034
Sijie Yao, Hui Zou, Haipeng Xing
{"title":"L1 Regularization for High-Dimensional Multivariate GARCH Models","authors":"Sijie Yao, Hui Zou, Haipeng Xing","doi":"10.3390/risks12020034","DOIUrl":null,"url":null,"abstract":"The complexity of estimating multivariate GARCH models increases significantly with the increase in the number of asset series. To address this issue, we propose a general regularization framework for high-dimensional GARCH models with BEKK representations, and obtain a penalized quasi-maximum likelihood (PQML) estimator. Under some regularity conditions, we establish some theoretical properties, such as the sparsity and the consistency, of the PQML estimator for the BEKK representations. We then carry out simulation studies to show the performance of the proposed inference framework and the procedure for selecting tuning parameters. In addition, we apply the proposed framework to analyze volatility spillover and portfolio optimization problems, using daily prices of 18 U.S. stocks from January 2016 to January 2018, and show that the proposed framework outperforms some benchmark models.","PeriodicalId":21282,"journal":{"name":"Risks","volume":"16 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Risks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/risks12020034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of estimating multivariate GARCH models increases significantly with the increase in the number of asset series. To address this issue, we propose a general regularization framework for high-dimensional GARCH models with BEKK representations, and obtain a penalized quasi-maximum likelihood (PQML) estimator. Under some regularity conditions, we establish some theoretical properties, such as the sparsity and the consistency, of the PQML estimator for the BEKK representations. We then carry out simulation studies to show the performance of the proposed inference framework and the procedure for selecting tuning parameters. In addition, we apply the proposed framework to analyze volatility spillover and portfolio optimization problems, using daily prices of 18 U.S. stocks from January 2016 to January 2018, and show that the proposed framework outperforms some benchmark models.
高维多变量 GARCH 模型的 L1 正则化
随着资产序列数量的增加,估计多元 GARCH 模型的复杂性也大大增加。为了解决这个问题,我们提出了一种针对具有 BEKK 表示的高维 GARCH 模型的一般正则化框架,并得到了一种惩罚性准极大似然(PQML)估计器。在一些正则条件下,我们建立了 BEKK 表示的 PQML 估计器的一些理论特性,如稀疏性和一致性。然后,我们进行了模拟研究,以展示所提出的推理框架的性能和选择调整参数的程序。此外,我们还利用 2016 年 1 月至 2018 年 1 月期间 18 种美股的每日价格,将所提出的框架用于分析波动溢出和投资组合优化问题,结果表明所提出的框架优于一些基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Risks
Risks Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
3.80
自引率
22.70%
发文量
205
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信