A new non-parametric estimation of the expected shortfall for dependent financial losses

Pub Date : 2024-02-03 DOI:10.1016/j.jspi.2024.106151
Khouzeima Moutanabbir , Mohammed Bouaddi
{"title":"A new non-parametric estimation of the expected shortfall for dependent financial losses","authors":"Khouzeima Moutanabbir ,&nbsp;Mohammed Bouaddi","doi":"10.1016/j.jspi.2024.106151","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we address the problem of kernel estimation of the Expected Shortfall (ES) risk measure for financial losses that satisfy the <span><math><mi>α</mi></math></span>-mixing conditions. First, we introduce a new non-parametric estimator for the ES measure using a kernel estimation. Given that the ES measure is the sum of the Value-at-Risk and the mean-excess function, we provide an estimation of the ES as a sum of the estimators of these two components. Our new estimator has a closed-form expression that depends on the choice of the kernel smoothing function, and we derive these expressions in the case of Gaussian, Uniform, and Epanechnikov kernel functions. We study the asymptotic properties of this new estimator and compare it to the Scaillet estimator. Capitalizing on the properties of these two estimators, we combine them to create a new estimator for the ES which reduces the bias and lowers the mean square error. The combined estimator shows better stability with respect to the choice of the kernel smoothing parameter. Our findings are illustrated through some numerical examples that help us to assess the small sample properties of the different estimators considered in this paper.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000089/pdfft?md5=41ea07fd0d26fc2bbea00de05c1c0468&pid=1-s2.0-S0378375824000089-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the problem of kernel estimation of the Expected Shortfall (ES) risk measure for financial losses that satisfy the α-mixing conditions. First, we introduce a new non-parametric estimator for the ES measure using a kernel estimation. Given that the ES measure is the sum of the Value-at-Risk and the mean-excess function, we provide an estimation of the ES as a sum of the estimators of these two components. Our new estimator has a closed-form expression that depends on the choice of the kernel smoothing function, and we derive these expressions in the case of Gaussian, Uniform, and Epanechnikov kernel functions. We study the asymptotic properties of this new estimator and compare it to the Scaillet estimator. Capitalizing on the properties of these two estimators, we combine them to create a new estimator for the ES which reduces the bias and lowers the mean square error. The combined estimator shows better stability with respect to the choice of the kernel smoothing parameter. Our findings are illustrated through some numerical examples that help us to assess the small sample properties of the different estimators considered in this paper.

分享
查看原文
对从属财务损失的预期缺口进行新的非参数估计
本文探讨了满足 α 混合条件的金融损失的预期缺口(ES)风险度量的核估计问题。首先,我们使用核估计法为 ES 度量引入了一个新的非参数估计器。鉴于 ES 度量是风险价值和均值溢出函数之和,我们将 ES 估计为这两个部分的估计值之和。我们的新估计器有一个闭式表达式,它取决于核平滑函数的选择,我们在高斯、均匀和 Epanechnikov 核函数的情况下推导出了这些表达式。我们研究了这种新估计器的渐近特性,并将其与斯凯莱估计器进行了比较。利用这两个估计器的特性,我们将它们结合起来,为 ES 创建了一个新的估计器,从而减少了偏差,降低了均方误差。在选择核平滑参数时,组合估计器显示出更好的稳定性。我们通过一些数字例子来说明我们的发现,这些例子有助于我们评估本文所考虑的不同估计器的小样本特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信