Queue Length in a System with an Autoregressive Hyperexponential Incoming Flow at a Critical Load

{"title":"Queue Length in a System with an Autoregressive Hyperexponential Incoming Flow at a Critical Load","authors":"","doi":"10.3103/s0278641923040118","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>A study is performed of a single-channel queuing system with two classes of priority requests, a relative priority discipline, a Poisson incoming flow with random intensity, and an infinite number of waiting places. The intensity is selected at the moment the countdown begins until the next request arrives, and the intensity does not change with a predetermined probability. The limit distribution of the number of requests of the lowest priority class at a critical system load is found.</p> </span>","PeriodicalId":501582,"journal":{"name":"Moscow University Computational Mathematics and Cybernetics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Computational Mathematics and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0278641923040118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A study is performed of a single-channel queuing system with two classes of priority requests, a relative priority discipline, a Poisson incoming flow with random intensity, and an infinite number of waiting places. The intensity is selected at the moment the countdown begins until the next request arrives, and the intensity does not change with a predetermined probability. The limit distribution of the number of requests of the lowest priority class at a critical system load is found.

临界负荷下具有自回归超指数入流的系统中的队列长度
摘要 对一个单通道排队系统进行了研究,该系统具有两类优先级请求、相对优先级规则、随机强度的泊松入流以及无限数量的等待位置。强度在下一个请求到达前的倒计时开始时选定,强度以预定概率不变。在临界系统负载下,最低优先级的请求数量的极限分布就可以找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信