G. H. Esslamzadeh, M. A. Faraji, B. Tabatabaie Shourijeh
{"title":"Orderability of the prefix expansion of an ordered inverse semigroup","authors":"G. H. Esslamzadeh, M. A. Faraji, B. Tabatabaie Shourijeh","doi":"10.1007/s00233-024-10409-x","DOIUrl":null,"url":null,"abstract":"<p>We answer two orderability questions about the prefix expansion semigroup <b>Pr</b>(<i>G</i>) of an inverse semigroup <i>G</i>. We show that if <i>G</i> is a left ordered inverse semigroup, then <b>Pr</b>(<i>G</i>) is a left ordered inverse semigroup if and only if it is an ordered inverse semigroup, if and only if <i>G</i> is a semilattice. We also prove that when <i>G</i> and <b>Pr</b>(<i>G</i>) are left ordered, <b>Pr</b>(<i>G</i>) is proper if and only if <i>G</i> is proper. Positivity of the canonical map from <i>G</i> into <b>Pr</b>(<i>G</i>) is also proved. At the end we correct an existing result in the literature by showing that for two arbitrary inverse semigroups <i>G</i> and <i>H</i> the map <b>Pr</b>(<span>\\(\\pi \\)</span>): <b>Pr</b>(<i>G</i>) <span>\\(\\longrightarrow \\)</span> <b>Pr</b>(<i>H</i>) induced by the partial homomorphism <span>\\(\\pi \\)</span>: <i>G</i> <span>\\(\\longrightarrow \\)</span> <i>H</i> is not necessarily a homomorphism, but is a partial homomorphism.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10409-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We answer two orderability questions about the prefix expansion semigroup Pr(G) of an inverse semigroup G. We show that if G is a left ordered inverse semigroup, then Pr(G) is a left ordered inverse semigroup if and only if it is an ordered inverse semigroup, if and only if G is a semilattice. We also prove that when G and Pr(G) are left ordered, Pr(G) is proper if and only if G is proper. Positivity of the canonical map from G into Pr(G) is also proved. At the end we correct an existing result in the literature by showing that for two arbitrary inverse semigroups G and H the map Pr(\(\pi \)): Pr(G) \(\longrightarrow \)Pr(H) induced by the partial homomorphism \(\pi \): G\(\longrightarrow \)H is not necessarily a homomorphism, but is a partial homomorphism.
我们回答了关于逆半群 G 的前缀展开半群 Pr(G) 的两个有序性问题。我们证明,如果 G 是一个左有序逆半群,那么只有当且仅当 G 是一个半网格时,Pr(G) 才是一个左有序逆半群。我们还证明,当 G 和 Pr(G) 都是左有序时,当且仅当 G 是有序的,Pr(G) 才是有序的。我们还证明了从 G 到 Pr(G)的典型映射的实在性。最后,我们通过证明对于两个任意反半群 G 和 H,映射 Pr(\(\pi\)):Pr(G) \(\longrightarrow \) Pr(H) 由部分同态性 \(\pi \) 引起:H 不一定是同态,但一定是部分同态。