Orderability of the prefix expansion of an ordered inverse semigroup

Pub Date : 2024-02-02 DOI:10.1007/s00233-024-10409-x
G. H. Esslamzadeh, M. A. Faraji, B. Tabatabaie Shourijeh
{"title":"Orderability of the prefix expansion of an ordered inverse semigroup","authors":"G. H. Esslamzadeh, M. A. Faraji, B. Tabatabaie Shourijeh","doi":"10.1007/s00233-024-10409-x","DOIUrl":null,"url":null,"abstract":"<p>We answer two orderability questions about the prefix expansion semigroup <b>Pr</b>(<i>G</i>) of an inverse semigroup <i>G</i>. We show that if <i>G</i> is a left ordered inverse semigroup, then <b>Pr</b>(<i>G</i>) is a left ordered inverse semigroup if and only if it is an ordered inverse semigroup, if and only if <i>G</i> is a semilattice. We also prove that when <i>G</i> and <b>Pr</b>(<i>G</i>) are left ordered, <b>Pr</b>(<i>G</i>) is proper if and only if <i>G</i> is proper. Positivity of the canonical map from <i>G</i> into <b>Pr</b>(<i>G</i>) is also proved. At the end we correct an existing result in the literature by showing that for two arbitrary inverse semigroups <i>G</i> and <i>H</i> the map <b>Pr</b>(<span>\\(\\pi \\)</span>): <b>Pr</b>(<i>G</i>) <span>\\(\\longrightarrow \\)</span> <b>Pr</b>(<i>H</i>) induced by the partial homomorphism <span>\\(\\pi \\)</span>: <i>G</i> <span>\\(\\longrightarrow \\)</span> <i>H</i> is not necessarily a homomorphism, but is a partial homomorphism.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00233-024-10409-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We answer two orderability questions about the prefix expansion semigroup Pr(G) of an inverse semigroup G. We show that if G is a left ordered inverse semigroup, then Pr(G) is a left ordered inverse semigroup if and only if it is an ordered inverse semigroup, if and only if G is a semilattice. We also prove that when G and Pr(G) are left ordered, Pr(G) is proper if and only if G is proper. Positivity of the canonical map from G into Pr(G) is also proved. At the end we correct an existing result in the literature by showing that for two arbitrary inverse semigroups G and H the map Pr(\(\pi \)): Pr(G) \(\longrightarrow \) Pr(H) induced by the partial homomorphism \(\pi \): G \(\longrightarrow \) H is not necessarily a homomorphism, but is a partial homomorphism.

分享
查看原文
有序逆半群前缀展开的有序性
我们回答了关于逆半群 G 的前缀展开半群 Pr(G) 的两个有序性问题。我们证明,如果 G 是一个左有序逆半群,那么只有当且仅当 G 是一个半网格时,Pr(G) 才是一个左有序逆半群。我们还证明,当 G 和 Pr(G) 都是左有序时,当且仅当 G 是有序的,Pr(G) 才是有序的。我们还证明了从 G 到 Pr(G)的典型映射的实在性。最后,我们通过证明对于两个任意反半群 G 和 H,映射 Pr(\(\pi\)):Pr(G) \(\longrightarrow \) Pr(H) 由部分同态性 \(\pi \) 引起:H 不一定是同态,但一定是部分同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信