Families of relatively exact Lagrangians, free loop spaces and generalised homology

{"title":"Families of relatively exact Lagrangians, free loop spaces and generalised homology","authors":"","doi":"10.1007/s00029-023-00910-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>We prove that (under appropriate orientation conditions, depending on <em>R</em>) a Hamiltonian isotopy <span> <span>\\(\\psi ^1\\)</span> </span> of a symplectic manifold <span> <span>\\((M, \\omega )\\)</span> </span> fixing a relatively exact Lagrangian <em>L</em> setwise must act trivially on <span> <span>\\(R_*(L)\\)</span> </span>, where <span> <span>\\(R_*\\)</span> </span> is some generalised homology theory. We use a strategy inspired by that of Hu et al. (Geom Topol 15:1617–1650, 2011), who proved an analogous result over <span> <span>\\({\\mathbb {Z}}/2\\)</span> </span> and over <span> <span>\\({\\mathbb {Z}}\\)</span> </span> under stronger orientation assumptions. However the differences in our approaches let us deduce that if <em>L</em> is a homotopy sphere, <span> <span>\\(\\psi ^1|_L\\)</span> </span> is homotopic to the identity. Our technical set-up differs from both theirs and that of Cohen et al. (in: Algebraic topology, Springer, Berlin, 2019) and Cohen (in: The Floer memorial volume, Birkhäuser, Basel). We also prove (under similar conditions) that <span> <span>\\(\\psi ^1|_L\\)</span> </span> acts trivially on <span> <span>\\(R_*({\\mathcal {L}}L)\\)</span> </span>, where <span> <span>\\({\\mathcal {L}}L\\)</span> </span> is the free loop space of <em>L</em>. From this we deduce that when <em>L</em> is a surface or a <span> <span>\\(K(\\pi , 1)\\)</span> </span>, <span> <span>\\(\\psi ^1|_L\\)</span> </span> is homotopic to the identity. Using methods of Lalonde and McDuff (Topology 42:309–347, 2003), we also show that given a family of Lagrangians all of which are Hamiltonian isotopic to <em>L</em> over a sphere or a torus, the associated fibre bundle cohomologically splits over <span> <span>\\({\\mathbb {Z}}/2\\)</span> </span>.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00910-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that (under appropriate orientation conditions, depending on R) a Hamiltonian isotopy \(\psi ^1\) of a symplectic manifold \((M, \omega )\) fixing a relatively exact Lagrangian L setwise must act trivially on \(R_*(L)\) , where \(R_*\) is some generalised homology theory. We use a strategy inspired by that of Hu et al. (Geom Topol 15:1617–1650, 2011), who proved an analogous result over \({\mathbb {Z}}/2\) and over \({\mathbb {Z}}\) under stronger orientation assumptions. However the differences in our approaches let us deduce that if L is a homotopy sphere, \(\psi ^1|_L\) is homotopic to the identity. Our technical set-up differs from both theirs and that of Cohen et al. (in: Algebraic topology, Springer, Berlin, 2019) and Cohen (in: The Floer memorial volume, Birkhäuser, Basel). We also prove (under similar conditions) that \(\psi ^1|_L\) acts trivially on \(R_*({\mathcal {L}}L)\) , where \({\mathcal {L}}L\) is the free loop space of L. From this we deduce that when L is a surface or a \(K(\pi , 1)\) , \(\psi ^1|_L\) is homotopic to the identity. Using methods of Lalonde and McDuff (Topology 42:309–347, 2003), we also show that given a family of Lagrangians all of which are Hamiltonian isotopic to L over a sphere or a torus, the associated fibre bundle cohomologically splits over \({\mathbb {Z}}/2\) .

相对精确拉格朗日族、自由环空间和广义同源性
摘要 我们证明(在适当的取向条件下,取决于 R)交折流形 \((M, \omega )\) 的哈密顿等位((\psi ^1\)固定一个相对精确的拉格朗日 L setwise)必须在 \(R_*(L)\)上起微不足道的作用,其中 \(R_*(L)\是某种广义同调理论。其中 \(R_*\) 是某种广义同调理论。我们使用的策略受到了 Hu 等人的启发(Geom Topol 15:1617-1650, 2011),他们证明了在\({\mathbb {Z}}/2\) 和\({\mathbb {Z}}\)上的类似结果。然而,我们方法的不同让我们推导出,如果 L 是一个同调球,那么 \(\psi ^1|_L\) 与同一性是同调的。我们的技术设置既不同于他们的,也不同于科恩等人(收录于《代数拓扑学》,施普林格出版社,柏林,2019年)和科恩(收录于《弗洛尔纪念卷》,伯克豪泽出版社,巴塞尔)的。我们还证明(在类似条件下),\(\psi ^1|_L\) 作用于 \(R_*({\mathcal {L}}L)\) 是微不足道的。由此我们可以推导出,当 L 是一个曲面或一个 \(K(\pi , 1)\) 时,\(\psi ^1|L_)作用于\(R_*({\mathcal {L}}L)\)。时,\(\psi ^1|_L\)与同一性同构。使用 Lalonde 和 McDuff 的方法(《拓扑学》42:309-347, 2003),我们还证明了给定一个拉格朗日族,所有这些拉格朗日族都是在球面或环面上与 L 同构的,相关的纤维束在 \({\mathbb {Z}}/2\) 上同调分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信