Hall Lie algebras of toric monoid schemes

Jaiung Jun, Matt Szczesny
{"title":"Hall Lie algebras of toric monoid schemes","authors":"Jaiung Jun, Matt Szczesny","doi":"10.1007/s00029-023-00913-3","DOIUrl":null,"url":null,"abstract":"<p>We associate to a projective <i>n</i>-dimensional toric variety <span>\\(X_{\\Delta }\\)</span> a pair of co-commutative (but generally non-commutative) Hopf algebras <span>\\(H^{\\alpha }_X, H^{T}_X\\)</span>. These arise as Hall algebras of certain categories <span>\\({\\text {Coh}}^{\\alpha }(X), {\\text {Coh}}^T(X)\\)</span> of coherent sheaves on <span>\\(X_{\\Delta }\\)</span> viewed as a monoid scheme—i.e. a scheme obtained by gluing together spectra of commutative monoids rather than rings. When <span>\\(X_{\\Delta }\\)</span> is smooth, the category <span>\\({\\text {Coh}}^T(X)\\)</span> has an explicit combinatorial description as sheaves whose restriction to each <span>\\(\\mathbb {A}^n\\)</span> corresponding to a maximal cone <span>\\(\\sigma \\in \\Delta \\)</span> is determined by an <i>n</i>-dimensional generalized skew shape. The (non-additive) categories <span>\\({\\text {Coh}}^{\\alpha }(X), {\\text {Coh}}^T(X)\\)</span> are treated via the formalism of proto-exact/proto-abelian categories developed by Dyckerhoff–Kapranov. The Hall algebras <span>\\(H^{\\alpha }_X, H^{T}_X\\)</span> are graded and connected, and so enveloping algebras <span>\\(H^{\\alpha }_X \\simeq U(\\mathfrak {n}^{\\alpha }_X)\\)</span>, <span>\\(H^{T}_X \\simeq U(\\mathfrak {n}^{T}_X)\\)</span>, where the Lie algebras <span>\\(\\mathfrak {n}^{\\alpha }_X, \\mathfrak {n}^{T}_X\\)</span> are spanned by the indecomposable coherent sheaves in their respective categories. We explicitly work out several examples, and in some cases are able to relate <span>\\(\\mathfrak {n}^T_X\\)</span> to known Lie algebras. In particular, when <span>\\(X = \\mathbb {P}^1\\)</span>, <span>\\(\\mathfrak {n}^T_X\\)</span> is isomorphic to a non-standard Borel in <span>\\(\\mathfrak {gl}_2 [t,t^{-1}]\\)</span>. When <i>X</i> is the second infinitesimal neighborhood of the origin inside <span>\\(\\mathbb {A}^2\\)</span>, <span>\\(\\mathfrak {n}^T_X\\)</span> is isomorphic to a subalgebra of <span>\\(\\mathfrak {gl}_2[t]\\)</span>. We also consider the case <span>\\(X=\\mathbb {P}^2\\)</span>, where we give a basis for <span>\\(\\mathfrak {n}^T_X\\)</span> by describing all indecomposable sheaves in <span>\\({\\text {Coh}}^T(X)\\)</span>.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"222 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-023-00913-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We associate to a projective n-dimensional toric variety \(X_{\Delta }\) a pair of co-commutative (but generally non-commutative) Hopf algebras \(H^{\alpha }_X, H^{T}_X\). These arise as Hall algebras of certain categories \({\text {Coh}}^{\alpha }(X), {\text {Coh}}^T(X)\) of coherent sheaves on \(X_{\Delta }\) viewed as a monoid scheme—i.e. a scheme obtained by gluing together spectra of commutative monoids rather than rings. When \(X_{\Delta }\) is smooth, the category \({\text {Coh}}^T(X)\) has an explicit combinatorial description as sheaves whose restriction to each \(\mathbb {A}^n\) corresponding to a maximal cone \(\sigma \in \Delta \) is determined by an n-dimensional generalized skew shape. The (non-additive) categories \({\text {Coh}}^{\alpha }(X), {\text {Coh}}^T(X)\) are treated via the formalism of proto-exact/proto-abelian categories developed by Dyckerhoff–Kapranov. The Hall algebras \(H^{\alpha }_X, H^{T}_X\) are graded and connected, and so enveloping algebras \(H^{\alpha }_X \simeq U(\mathfrak {n}^{\alpha }_X)\), \(H^{T}_X \simeq U(\mathfrak {n}^{T}_X)\), where the Lie algebras \(\mathfrak {n}^{\alpha }_X, \mathfrak {n}^{T}_X\) are spanned by the indecomposable coherent sheaves in their respective categories. We explicitly work out several examples, and in some cases are able to relate \(\mathfrak {n}^T_X\) to known Lie algebras. In particular, when \(X = \mathbb {P}^1\), \(\mathfrak {n}^T_X\) is isomorphic to a non-standard Borel in \(\mathfrak {gl}_2 [t,t^{-1}]\). When X is the second infinitesimal neighborhood of the origin inside \(\mathbb {A}^2\), \(\mathfrak {n}^T_X\) is isomorphic to a subalgebra of \(\mathfrak {gl}_2[t]\). We also consider the case \(X=\mathbb {P}^2\), where we give a basis for \(\mathfrak {n}^T_X\) by describing all indecomposable sheaves in \({\text {Coh}}^T(X)\).

Abstract Image

环状单元方案的霍尔李代数
我们把一对共交换(但一般是非交换)的霍普夫布拉斯(H^{α }_X, H^{T}_X)关联到一个投影 n 维的环综 \(X_{\Delta }\) 上。这些是作为\(X_{\Δ }\) 上相干剪切的某些类别 \({\text {Coh}}^{\alpha }(X), {\text {Coh}}^T(X)\) 的霍尔代数出现的,这些相干剪切被视为单元方案--即通过粘合交换单元而非环的谱而得到的方案。当 \(X_{\Delta }\) 是光滑的时候,类别 \({\text {Coh}}^T(X)\) 有一个明确的组合描述,即其对对应于最大锥体 \(\sigma \in \Delta \)的每个 \(\mathbb {A}^n\) 的限制是由一个 n 维的广义倾斜形状决定的。通过戴克霍夫-卡普拉诺夫(Dyckerhoff-Kapranov)提出的原精确/原阿贝尔范畴的形式主义来处理(非相加)范畴 \({\text {Coh}}^{\alpha }(X), {\text {Coh}}^T(X)\) 。霍尔代数(H^{\alpha }_X, H^{T}_X)是分级的、连通的,因此包络代数(H^{\alpha }_X \simeq U(\mathfrak {n}^{alpha }_X)\), \(H^{T}_X \simeq U(\mathfrak {n}^{T}_X)\)、其中的李代数(\mathfrak {n}^{alpha }_X,\mathfrak {n}^{T}_X\) 由它们各自范畴中不可分解的相干剪切所跨。我们明确地举出了几个例子,并在某些情况下将\(\mathfrak {n}^{T}_X\) 与已知的李代数联系起来。特别是,当 \(X = \mathbb {P}^1\) 时, \(\mathfrak {n}^T_X\) 与 \(\mathfrak {gl}_2 [t,t^{-1}]\) 中的非标准 Borel 同构。当 X 是 \(\mathbb {A}^2\) 内原点的第二个无限小邻域时, \(\mathfrak {n}^T_X\) 与 \(\mathfrak {gl}_2[t]\) 的一个子代数同构。我们还考虑了 \(X=\mathbb {P}^2\) 的情况,在这种情况下,我们通过描述 \({\text {Coh}}^T(X)\) 中所有不可分解的剪切来给出 \(\mathfrak {n}^T_X\) 的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信