Micro-scale mismatches of electrically conductive and mechanically resilient regimes in Li-variant sulfide conductors

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Ji-Su Kim, Sung Soo Shin, Hyoungchul Kim
{"title":"Micro-scale mismatches of electrically conductive and mechanically resilient regimes in Li-variant sulfide conductors","authors":"Ji-Su Kim, Sung Soo Shin, Hyoungchul Kim","doi":"10.1016/j.mtener.2024.101517","DOIUrl":null,"url":null,"abstract":"<p>Li-ion-conductive sulfide electrolytes have attracted significant attention with regard to the development of superior solid-state batteries owing to their high ionic conductivity and ductile mechanical properties. Nevertheless, the relationship between the variations in Li content resulting from extraction and insertion in sulfide electrolytes and their subsequent influence on the electrochemical and mechanical properties remains unelucidated. In this study, we simulated the electrochemical operating conditions of glass sulfides through experimental and computational methods. Our investigation focused on the microscale reversibility of their electrochemical and mechanical properties. In Li-variant glass sulfides, (Li<sub>2</sub>S)<sub>0.75(1−<em>x</em>)</sub>(P<sub>2</sub>S<sub>5</sub>)<sub>0.25</sub>S<sub>0.75<em>x</em></sub>, we demonstrated that 50% Li deficiency induced polymerization, resulting in a 98% decrease in Li-ion conductivity. Furthermore, we posit that changes in the mechanical properties of solid electrolytes during plastic deformation can be evaluated using Pugh’s ratio. In the case of Li deficiency, the Pugh’s ratio is reduced by 24%, and the solid electrolyte becomes extremely brittle. Interface deterioration in solid-state batteries is accelerated by the irreversible elastic hardening resulting from delithiation and polymerization of solid electrolytes during continuous electrochemical cycling. These evaluation approaches, which are based on Li-variant glass sulfides, afford guidelines for designing electrolytes suitable for cathodes.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"1 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101517","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Li-ion-conductive sulfide electrolytes have attracted significant attention with regard to the development of superior solid-state batteries owing to their high ionic conductivity and ductile mechanical properties. Nevertheless, the relationship between the variations in Li content resulting from extraction and insertion in sulfide electrolytes and their subsequent influence on the electrochemical and mechanical properties remains unelucidated. In this study, we simulated the electrochemical operating conditions of glass sulfides through experimental and computational methods. Our investigation focused on the microscale reversibility of their electrochemical and mechanical properties. In Li-variant glass sulfides, (Li2S)0.75(1−x)(P2S5)0.25S0.75x, we demonstrated that 50% Li deficiency induced polymerization, resulting in a 98% decrease in Li-ion conductivity. Furthermore, we posit that changes in the mechanical properties of solid electrolytes during plastic deformation can be evaluated using Pugh’s ratio. In the case of Li deficiency, the Pugh’s ratio is reduced by 24%, and the solid electrolyte becomes extremely brittle. Interface deterioration in solid-state batteries is accelerated by the irreversible elastic hardening resulting from delithiation and polymerization of solid electrolytes during continuous electrochemical cycling. These evaluation approaches, which are based on Li-variant glass sulfides, afford guidelines for designing electrolytes suitable for cathodes.

Abstract Image

硫化锂变体导体中导电和机械弹性状态的微尺度失配
锂离子导电硫化物电解质具有高离子传导性和韧性机械特性,因此在开发优质固态电池方面备受关注。然而,硫化物电解质中因萃取和插入而产生的锂含量变化与其随后对电化学和机械性能的影响之间的关系仍未得到阐明。在本研究中,我们通过实验和计算方法模拟了玻璃硫化物的电化学工作条件。我们的研究重点是其电化学和机械性能的微尺度可逆性。在锂变体玻璃硫化物 (Li2S)0.75(1-x)(P2S5)0.25S0.75x 中,我们证明了 50% 的锂缺乏会诱导聚合,导致锂离子电导率下降 98%。此外,我们认为固体电解质在塑性变形过程中的机械性能变化可以通过普氏比来评估。在缺锂的情况下,普氏比降低了 24%,固体电解质变得极脆。在连续电化学循环过程中,固体电解质的脱ithiation 和聚合作用会导致不可逆的弹性硬化,从而加速固态电池的界面劣化。这些基于锂变体玻璃硫化物的评估方法为设计适合阴极的电解质提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信