Ross Chandler, Ganesh Bhat, John Mavrogenes, Brad Knell, Rhiannon David, Thomas Leggo
{"title":"The Primary Geology of the Paleoproterozoic MT Weld Carbonatite Complex, Western Australia","authors":"Ross Chandler, Ganesh Bhat, John Mavrogenes, Brad Knell, Rhiannon David, Thomas Leggo","doi":"10.1093/petrology/egae007","DOIUrl":null,"url":null,"abstract":"The paleoregolith overlying the c. 2.06 Ga Mt Weld carbonatite (eastern Yilgarn Craton, Western Australia) hosts one of the largest Rare Earth Element (REE) deposits globally. Historic exploration and research has focussed on this weathered material, with a lack of unweathered samples preventing a thorough investigation into the nature of the underlying carbonatite. Recent deep drilling has allowed this first in-depth study into the primary geology, mineralogy and geochemistry of the carbonatite complex. Mt Weld shares a similar lithological architecture to other global carbonatite complexes such as Ngualla (Tanzania, Bonga (Angola), Chilwa Island (Malawi) and Mirima Hill (Malawi), displaying a central (~600 m diameter) unit of magnesio- to ferrocarbonatite is surrounded by a broad (~1.2 km) annulus of calciocarbonatite, itself surrounded by a fenitic halo. Primary REE mineralisation occurs within the central magnesio- to ferrocarbonatites (~2% Total Rare Earth Oxides in bulk rock) and is dominated by fine-grained monazite hosted within fractures and voids, as well as late magmatic synchysite/bastnäsite. Both high and low phosphourous ferrocarbonatites occur within this central magnesio- to ferrocarbonatite unit that display (respectively) monazite or synchysite/bastnäsite mineralisation with textural evidence for these REE-bearing carbonates occasionally forming as polycrystalline pseudomorphs of earlier burbankite group minerals. Magnesio- to ferrocarbonatite dykes with zhonghuacerite/olekminskite/ancylite assemblages occur throughout the otherwise REE-poor calciocarbonatites (~0.2% Total Rare Earth Oxides in bulk rock). Late hydrothermal events strongly influenced the modern-day mineral assemblages with much of the existing ore mineral textures interpreted as hydrothermal reworkings of pre-existing REE-bearing minerals. A comparison of the fresh carbonatite and the paleoregolith geochemistry suggest minimal horizontal migration of ore elements during paleoregolith formation, with the overlying paleoregolith material broadly reflecting the underlying carbonatite trace and minor element signatures. This allows the inference of an approximately 5x upgrade in REE (and Nb) concentrations from the primary carbonatite to the overlying paleoregolith. Mt Weld shows distinct geological, mineralogical and isotopic differences to other currently mined carbonatite-associated REE deposits such as Bayan Obo (China), Mountain Pass (USA) and the Mianning-Dechang belt (China), which suggests that fundamentally different carbonatite mantle sources and evolutionary paths can form world-class REE ore bodies.","PeriodicalId":16751,"journal":{"name":"Journal of Petrology","volume":"86 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/petrology/egae007","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paleoregolith overlying the c. 2.06 Ga Mt Weld carbonatite (eastern Yilgarn Craton, Western Australia) hosts one of the largest Rare Earth Element (REE) deposits globally. Historic exploration and research has focussed on this weathered material, with a lack of unweathered samples preventing a thorough investigation into the nature of the underlying carbonatite. Recent deep drilling has allowed this first in-depth study into the primary geology, mineralogy and geochemistry of the carbonatite complex. Mt Weld shares a similar lithological architecture to other global carbonatite complexes such as Ngualla (Tanzania, Bonga (Angola), Chilwa Island (Malawi) and Mirima Hill (Malawi), displaying a central (~600 m diameter) unit of magnesio- to ferrocarbonatite is surrounded by a broad (~1.2 km) annulus of calciocarbonatite, itself surrounded by a fenitic halo. Primary REE mineralisation occurs within the central magnesio- to ferrocarbonatites (~2% Total Rare Earth Oxides in bulk rock) and is dominated by fine-grained monazite hosted within fractures and voids, as well as late magmatic synchysite/bastnäsite. Both high and low phosphourous ferrocarbonatites occur within this central magnesio- to ferrocarbonatite unit that display (respectively) monazite or synchysite/bastnäsite mineralisation with textural evidence for these REE-bearing carbonates occasionally forming as polycrystalline pseudomorphs of earlier burbankite group minerals. Magnesio- to ferrocarbonatite dykes with zhonghuacerite/olekminskite/ancylite assemblages occur throughout the otherwise REE-poor calciocarbonatites (~0.2% Total Rare Earth Oxides in bulk rock). Late hydrothermal events strongly influenced the modern-day mineral assemblages with much of the existing ore mineral textures interpreted as hydrothermal reworkings of pre-existing REE-bearing minerals. A comparison of the fresh carbonatite and the paleoregolith geochemistry suggest minimal horizontal migration of ore elements during paleoregolith formation, with the overlying paleoregolith material broadly reflecting the underlying carbonatite trace and minor element signatures. This allows the inference of an approximately 5x upgrade in REE (and Nb) concentrations from the primary carbonatite to the overlying paleoregolith. Mt Weld shows distinct geological, mineralogical and isotopic differences to other currently mined carbonatite-associated REE deposits such as Bayan Obo (China), Mountain Pass (USA) and the Mianning-Dechang belt (China), which suggests that fundamentally different carbonatite mantle sources and evolutionary paths can form world-class REE ore bodies.
期刊介绍:
The Journal of Petrology provides an international forum for the publication of high quality research in the broad field of igneous and metamorphic petrology and petrogenesis. Papers published cover a vast range of topics in areas such as major element, trace element and isotope geochemistry and geochronology applied to petrogenesis; experimental petrology; processes of magma generation, differentiation and emplacement; quantitative studies of rock-forming minerals and their paragenesis; regional studies of igneous and meta morphic rocks which contribute to the solution of fundamental petrological problems; theoretical modelling of petrogenetic processes.