On Vietoris–Rips complexes of finite metric spaces with scale 2

Pub Date : 2024-02-03 DOI:10.1007/s40062-024-00340-x
Ziqin Feng, Naga Chandra Padmini Nukala
{"title":"On Vietoris–Rips complexes of finite metric spaces with scale 2","authors":"Ziqin Feng,&nbsp;Naga Chandra Padmini Nukala","doi":"10.1007/s40062-024-00340-x","DOIUrl":null,"url":null,"abstract":"<div><p>We examine the homotopy types of Vietoris–Rips complexes on certain finite metric spaces at scale 2. We consider the collections of subsets of <span>\\([m]=\\{1, 2, \\ldots , m\\}\\)</span> equipped with symmetric difference metric <i>d</i>, specifically, <span>\\({\\mathcal {F}}^m_n\\)</span>, <span>\\({\\mathcal {F}}_n^m\\cup {\\mathcal {F}}^m_{n+1}\\)</span>, <span>\\({\\mathcal {F}}_n^m\\cup {\\mathcal {F}}^m_{n+2}\\)</span>, and <span>\\({\\mathcal {F}}_{\\preceq A}^m\\)</span>. Here <span>\\({\\mathcal {F}}^m_n\\)</span> is the collection of size <i>n</i> subsets of [<i>m</i>] and <span>\\({\\mathcal {F}}_{\\preceq A}^m\\)</span> is the collection of subsets <span>\\(\\preceq A\\)</span> where <span>\\(\\preceq \\)</span> is a total order on the collections of subsets of [<i>m</i>] and <span>\\(A\\subseteq [m]\\)</span> (see the definition of <span>\\(\\preceq \\)</span> in Sect. 1). We prove that the Vietoris–Rips complexes <span>\\({{\\mathcal {V}}}{{\\mathcal {R}}}({\\mathcal {F}}^m_n, 2)\\)</span> and <span>\\({{\\mathcal {V}}}{{\\mathcal {R}}}({\\mathcal {F}}_n^m\\cup {\\mathcal {F}}^m_{n+1}, 2)\\)</span> are either contractible or homotopy equivalent to a wedge sum of <span>\\(S^2\\)</span>’s; also, the complexes <span>\\({{\\mathcal {V}}}{{\\mathcal {R}}}({\\mathcal {F}}_n^m\\cup {\\mathcal {F}}^m_{n+2}, 2)\\)</span> and <span>\\({{\\mathcal {V}}}{{\\mathcal {R}}}({\\mathcal {F}}_{\\preceq A}^m, 2)\\)</span> are either contractible or homotopy equivalent to a wedge sum of <span>\\(S^3\\)</span>’s. We provide inductive formulae for these homotopy types extending the result of Barmak about the independence complexes of Kneser graphs KG<span>\\(_{2, k}\\)</span> and the result of Adamaszek and Adams about Vietoris–Rips complexes of hypercube graphs with scale 2.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-024-00340-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We examine the homotopy types of Vietoris–Rips complexes on certain finite metric spaces at scale 2. We consider the collections of subsets of \([m]=\{1, 2, \ldots , m\}\) equipped with symmetric difference metric d, specifically, \({\mathcal {F}}^m_n\), \({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+1}\), \({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+2}\), and \({\mathcal {F}}_{\preceq A}^m\). Here \({\mathcal {F}}^m_n\) is the collection of size n subsets of [m] and \({\mathcal {F}}_{\preceq A}^m\) is the collection of subsets \(\preceq A\) where \(\preceq \) is a total order on the collections of subsets of [m] and \(A\subseteq [m]\) (see the definition of \(\preceq \) in Sect. 1). We prove that the Vietoris–Rips complexes \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}^m_n, 2)\) and \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+1}, 2)\) are either contractible or homotopy equivalent to a wedge sum of \(S^2\)’s; also, the complexes \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_n^m\cup {\mathcal {F}}^m_{n+2}, 2)\) and \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}_{\preceq A}^m, 2)\) are either contractible or homotopy equivalent to a wedge sum of \(S^3\)’s. We provide inductive formulae for these homotopy types extending the result of Barmak about the independence complexes of Kneser graphs KG\(_{2, k}\) and the result of Adamaszek and Adams about Vietoris–Rips complexes of hypercube graphs with scale 2.

分享
查看原文
论尺度为 2 的有限度量空间的 Vietoris-Rips 复数
我们研究了尺度为 2 的某些有限度量空间上的 Vietoris-Rips 复数的同调类型。我们考虑了配备对称差分度量 d 的 \([m]=\{1, 2, \ldots , m\}\) 子集的集合,特别是 \({\mathcal {F}}^m_n\)、\({\mathcal {F}}_n^m\up {\mathcal {F}}^m_{n+1}\),\({\mathcal {F}}_n^m\up {\mathcal {F}}^m_{n+2}\), and\({\mathcal {F}}_{p\receq A}^m\).这里,\({\mathcal {F}^m_n\) 是 [m] 的大小为 n 的子集的集合,\({\mathcal {F}_{\preceq A}^m\) 是子集的集合。其中 \(\preceq \)是[m]的子集集合的总序,而 \(A\subseteq [m]\)是[m]的子集集合(参见第 1 节中 \(\preceq \)的定义)。1).我们证明 Vietoris-Rips 复数 \({{\mathcal {V}}}{{\mathcal {R}}}({\mathcal {F}}^m_n、2)\) 和 \({{{mathcal {V}}{{{mathcal {R}}}({\mathcal {F}_n^m\cup {mathcal {F}^m_{n+1}, 2)\) 要么是可收缩的,要么是等同于 \(S^2\) 的楔形和;此外,复数 ({{mathcal {V}}{{mathcal {R}}({\mathcal {F}}_n^m\cup {mathcal {F}}^m_{n+2}、2)\)和({{mathcal {V}}{{mathcal {R}}({\mathcal {F}_{\preceq A}^m, 2)\)要么是可收缩的,要么是与\(S^3\)的楔和等价的。我们提供了这些同调类型的归纳公式,扩展了巴马克关于 Kneser 图 KG\(_{2, k}\) 的独立性复数的结果,以及阿达马泽克和亚当斯关于尺度为 2 的超立方图的 Vietoris-Rips 复数的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信