{"title":"CAT(0) Spaces of Higher Rank I","authors":"","doi":"10.1007/s00039-024-00661-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A CAT(0) space has rank at least <em>n</em> if every geodesic lies in an <em>n</em>-flat. Ballmann’s Higher Rank Rigidity Conjecture predicts that a CAT(0) space of rank at least 2 with a geometric group action is <em>rigid</em> – isometric to a Riemannian symmetric space, a Euclidean building, or splits as a metric product. This paper is the first in a series motivated by Ballmann’s conjecture. Here we prove that a CAT(0) space of rank at least <em>n</em>≥2 is rigid if it contains a periodic <em>n</em>-flat and its Tits boundary has dimension (<em>n</em>−1). This does not require a geometric group action. The result relies essentially on the study of flats which do not bound flat half-spaces – so-called <em>Morse flats</em>. We show that the Tits boundary <em>∂</em><sub><em>T</em></sub><em>F</em> of a periodic Morse <em>n</em>-flat <em>F</em> contains a <em>regular point</em> – a point with a Tits-neighborhood entirely contained in <em>∂</em><sub><em>T</em></sub><em>F</em>. More precisely, we show that the set of singular points in <em>∂</em><sub><em>T</em></sub><em>F</em> can be covered by finitely many round spheres of positive codimension.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"302 1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00661-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A CAT(0) space has rank at least n if every geodesic lies in an n-flat. Ballmann’s Higher Rank Rigidity Conjecture predicts that a CAT(0) space of rank at least 2 with a geometric group action is rigid – isometric to a Riemannian symmetric space, a Euclidean building, or splits as a metric product. This paper is the first in a series motivated by Ballmann’s conjecture. Here we prove that a CAT(0) space of rank at least n≥2 is rigid if it contains a periodic n-flat and its Tits boundary has dimension (n−1). This does not require a geometric group action. The result relies essentially on the study of flats which do not bound flat half-spaces – so-called Morse flats. We show that the Tits boundary ∂TF of a periodic Morse n-flat F contains a regular point – a point with a Tits-neighborhood entirely contained in ∂TF. More precisely, we show that the set of singular points in ∂TF can be covered by finitely many round spheres of positive codimension.
期刊介绍:
Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis.
GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016.
Publishes major results on topics in geometry and analysis.
Features papers which make connections between relevant fields and their applications to other areas.