CAT(0) Spaces of Higher Rank I

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"CAT(0) Spaces of Higher Rank I","authors":"","doi":"10.1007/s00039-024-00661-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A CAT(0) space has rank at least <em>n</em> if every geodesic lies in an <em>n</em>-flat. Ballmann’s Higher Rank Rigidity Conjecture predicts that a CAT(0) space of rank at least 2 with a geometric group action is <em>rigid</em> – isometric to a Riemannian symmetric space, a Euclidean building, or splits as a metric product. This paper is the first in a series motivated by Ballmann’s conjecture. Here we prove that a CAT(0) space of rank at least <em>n</em>≥2 is rigid if it contains a periodic <em>n</em>-flat and its Tits boundary has dimension (<em>n</em>−1). This does not require a geometric group action. The result relies essentially on the study of flats which do not bound flat half-spaces – so-called <em>Morse flats</em>. We show that the Tits boundary <em>∂</em><sub><em>T</em></sub><em>F</em> of a periodic Morse <em>n</em>-flat <em>F</em> contains a <em>regular point</em> – a point with a Tits-neighborhood entirely contained in <em>∂</em><sub><em>T</em></sub><em>F</em>. More precisely, we show that the set of singular points in <em>∂</em><sub><em>T</em></sub><em>F</em> can be covered by finitely many round spheres of positive codimension.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00661-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

A CAT(0) space has rank at least n if every geodesic lies in an n-flat. Ballmann’s Higher Rank Rigidity Conjecture predicts that a CAT(0) space of rank at least 2 with a geometric group action is rigid – isometric to a Riemannian symmetric space, a Euclidean building, or splits as a metric product. This paper is the first in a series motivated by Ballmann’s conjecture. Here we prove that a CAT(0) space of rank at least n≥2 is rigid if it contains a periodic n-flat and its Tits boundary has dimension (n−1). This does not require a geometric group action. The result relies essentially on the study of flats which do not bound flat half-spaces – so-called Morse flats. We show that the Tits boundary TF of a periodic Morse n-flat F contains a regular point – a point with a Tits-neighborhood entirely contained in TF. More precisely, we show that the set of singular points in TF can be covered by finitely many round spheres of positive codimension.

CAT(0) I 类高级职位空缺
摘要 如果每条测地线都位于一个 n 扁平中,则 CAT(0) 空间的秩至少为 n。鲍尔曼的高阶刚性猜想预言,具有几何群作用的至少 2 阶 CAT(0) 空间是刚性的--与黎曼对称空间、欧几里得建筑等距,或分裂为度量积。本文是鲍尔曼猜想系列的第一篇论文。我们在此证明,如果秩至少为 n≥2 的 CAT(0) 空间包含周期性 n 平面,且其 Tits 边界维数为 (n-1),那么它就是刚性的。这并不需要几何群作用。这一结果主要依赖于对不以平面半空间为界的平面--即所谓的莫尔斯平面--的研究。我们证明了周期性莫尔斯 n 平面 F 的 Tits 边界 ∂TF 包含一个正则点--一个 Tits 邻域完全包含在 ∂TF 中的点。更确切地说,我们证明了 ∂TF 中的奇异点集合可以被有限多个正标度圆球覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信