CAT(0) Spaces of Higher Rank I

IF 2.4 1区 数学 Q1 MATHEMATICS
{"title":"CAT(0) Spaces of Higher Rank I","authors":"","doi":"10.1007/s00039-024-00661-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A CAT(0) space has rank at least <em>n</em> if every geodesic lies in an <em>n</em>-flat. Ballmann’s Higher Rank Rigidity Conjecture predicts that a CAT(0) space of rank at least 2 with a geometric group action is <em>rigid</em> – isometric to a Riemannian symmetric space, a Euclidean building, or splits as a metric product. This paper is the first in a series motivated by Ballmann’s conjecture. Here we prove that a CAT(0) space of rank at least <em>n</em>≥2 is rigid if it contains a periodic <em>n</em>-flat and its Tits boundary has dimension (<em>n</em>−1). This does not require a geometric group action. The result relies essentially on the study of flats which do not bound flat half-spaces – so-called <em>Morse flats</em>. We show that the Tits boundary <em>∂</em><sub><em>T</em></sub><em>F</em> of a periodic Morse <em>n</em>-flat <em>F</em> contains a <em>regular point</em> – a point with a Tits-neighborhood entirely contained in <em>∂</em><sub><em>T</em></sub><em>F</em>. More precisely, we show that the set of singular points in <em>∂</em><sub><em>T</em></sub><em>F</em> can be covered by finitely many round spheres of positive codimension.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"302 1 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-024-00661-2","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A CAT(0) space has rank at least n if every geodesic lies in an n-flat. Ballmann’s Higher Rank Rigidity Conjecture predicts that a CAT(0) space of rank at least 2 with a geometric group action is rigid – isometric to a Riemannian symmetric space, a Euclidean building, or splits as a metric product. This paper is the first in a series motivated by Ballmann’s conjecture. Here we prove that a CAT(0) space of rank at least n≥2 is rigid if it contains a periodic n-flat and its Tits boundary has dimension (n−1). This does not require a geometric group action. The result relies essentially on the study of flats which do not bound flat half-spaces – so-called Morse flats. We show that the Tits boundary TF of a periodic Morse n-flat F contains a regular point – a point with a Tits-neighborhood entirely contained in TF. More precisely, we show that the set of singular points in TF can be covered by finitely many round spheres of positive codimension.

CAT(0) I 类高级职位空缺
摘要 如果每条测地线都位于一个 n 扁平中,则 CAT(0) 空间的秩至少为 n。鲍尔曼的高阶刚性猜想预言,具有几何群作用的至少 2 阶 CAT(0) 空间是刚性的--与黎曼对称空间、欧几里得建筑等距,或分裂为度量积。本文是鲍尔曼猜想系列的第一篇论文。我们在此证明,如果秩至少为 n≥2 的 CAT(0) 空间包含周期性 n 平面,且其 Tits 边界维数为 (n-1),那么它就是刚性的。这并不需要几何群作用。这一结果主要依赖于对不以平面半空间为界的平面--即所谓的莫尔斯平面--的研究。我们证明了周期性莫尔斯 n 平面 F 的 Tits 边界 ∂TF 包含一个正则点--一个 Tits 邻域完全包含在 ∂TF 中的点。更确切地说,我们证明了 ∂TF 中的奇异点集合可以被有限多个正标度圆球覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信