Face Reflection Removal Network Using Multispectral Fusion of RGB and NIR Images

IF 2.9 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hui Lan;Enquan Zhang;Cheolkon Jung
{"title":"Face Reflection Removal Network Using Multispectral Fusion of RGB and NIR Images","authors":"Hui Lan;Enquan Zhang;Cheolkon Jung","doi":"10.1109/OJSP.2024.3351472","DOIUrl":null,"url":null,"abstract":"Images captured through glass are usually contaminated by reflections, and the removal of them from images is a challenging task. Since the primary concern on photos is face, the face images with reflections annoy viewers severely. In this article, we propose a face reflection removal network using multispectral fusion of color (RGB) and near infrared (NIR) images, called FRRN. Due to the different spectral wavelengths of visible light [380 nm, 780 nm] and near infrared [780 nm, 2526 nm], NIR cameras are not sensitive to the visible light and thus NIR images are less corrupted by reflections. NIR images preserve structure information well and can guide the restoration process from reflections on the RGB images. Thus, we adopt multispectual fusion of RGB and NIR images for reflection removal from a face image. FRRN consists of one encoder model (contextual encoder model (CEM)) and two decoder models (NIR inference decoder model (NIDM) and image inference decoder model (IIDM)). CEM captures features from shallow to deep layers on the scene information while suppressing the sparse reflection component. NIDM infers NIR image to facilitate multi-scale guidance for reflection removal, while IIDM estimates the transmission layer with the guidance of NIDM. Besides, we present the reflection confidence generation module (RCGM) based on Laplacian convolution and channel attention-based residual block (CARB) to represent the reflection confidence in a region for reflection removal. To train FRRN, we construct a large-scale training dataset with face image and reflection layer (RGB and NIR images) and its corresponding test dataset using JAI AD-130 GE camera. Various experiments demonstrate that FRRN outperforms state-of-the-art methods for reflection removal in terms of visual quality and quantitative measurements.","PeriodicalId":73300,"journal":{"name":"IEEE open journal of signal processing","volume":"5 ","pages":"383-392"},"PeriodicalIF":2.9000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10384724","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of signal processing","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10384724/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Images captured through glass are usually contaminated by reflections, and the removal of them from images is a challenging task. Since the primary concern on photos is face, the face images with reflections annoy viewers severely. In this article, we propose a face reflection removal network using multispectral fusion of color (RGB) and near infrared (NIR) images, called FRRN. Due to the different spectral wavelengths of visible light [380 nm, 780 nm] and near infrared [780 nm, 2526 nm], NIR cameras are not sensitive to the visible light and thus NIR images are less corrupted by reflections. NIR images preserve structure information well and can guide the restoration process from reflections on the RGB images. Thus, we adopt multispectual fusion of RGB and NIR images for reflection removal from a face image. FRRN consists of one encoder model (contextual encoder model (CEM)) and two decoder models (NIR inference decoder model (NIDM) and image inference decoder model (IIDM)). CEM captures features from shallow to deep layers on the scene information while suppressing the sparse reflection component. NIDM infers NIR image to facilitate multi-scale guidance for reflection removal, while IIDM estimates the transmission layer with the guidance of NIDM. Besides, we present the reflection confidence generation module (RCGM) based on Laplacian convolution and channel attention-based residual block (CARB) to represent the reflection confidence in a region for reflection removal. To train FRRN, we construct a large-scale training dataset with face image and reflection layer (RGB and NIR images) and its corresponding test dataset using JAI AD-130 GE camera. Various experiments demonstrate that FRRN outperforms state-of-the-art methods for reflection removal in terms of visual quality and quantitative measurements.
利用多光谱融合 RGB 和近红外图像的人脸反射去除网络
透过玻璃拍摄的图像通常会受到反光的污染,而从图像中去除反光是一项具有挑战性的任务。由于照片的主要关注点是人脸,因此带有反光的人脸图像会严重干扰观众。在本文中,我们提出了一种使用彩色(RGB)和近红外(NIR)图像的多光谱融合的人脸反光去除网络,称为 FRRN。由于可见光[380 nm, 780 nm]和近红外[780 nm, 2526 nm]的光谱波长不同,近红外相机对可见光不敏感,因此近红外图像受反光干扰较少。近红外图像能很好地保存结构信息,并能指导 RGB 图像反射的修复过程。因此,我们采用多光谱融合 RGB 和近红外图像的方法来去除人脸图像上的反光。FRRN 包括一个编码器模型(上下文编码器模型(CEM))和两个解码器模型(近红外推理解码器模型(NIDM)和图像推理解码器模型(IIDM))。CEM 可捕捉场景信息从浅层到深层的特征,同时抑制稀疏的反射成分。NIDM 对近红外图像进行推理,以便为去除反射提供多尺度指导,而 IIDM 则在 NIDM 的指导下估计透射层。此外,我们还提出了基于拉普拉斯卷积和基于信道注意力的残差块(CARB)的反射置信度生成模块(RCGM),用于表示区域内的反射置信度,以去除反射。为了训练 FRRN,我们使用 JAI AD-130 GE 摄像机构建了一个包含人脸图像和反射层(RGB 和 NIR 图像)的大规模训练数据集及其相应的测试数据集。各种实验证明,FRRN 在视觉质量和定量测量方面都优于最先进的反光去除方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信