Ree groups as automorphism groups of block designs

Ashraf Daneshkhah
{"title":"Ree groups as automorphism groups of block designs","authors":"Ashraf Daneshkhah","doi":"10.1016/j.exco.2024.100137","DOIUrl":null,"url":null,"abstract":"<div><p>A recent classification of flag-transitive 2-designs with parameters <span><math><mrow><mo>(</mo><mi>v</mi><mo>,</mo><mi>k</mi><mo>,</mo><mi>λ</mi><mo>)</mo></mrow></math></span> whose replication number <span><math><mi>r</mi></math></span> is coprime to <span><math><mi>λ</mi></math></span> gives rise to eight possible infinite families of 2-designs, some of which are with new parameters. In this note, we give explicit constructions for two of these families of 2-designs, and show that for a given positive integer <span><math><mrow><mi>q</mi><mo>=</mo><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>⩾</mo><mn>27</mn></mrow></math></span>, there exist 2-designs with parameters <span><math><mrow><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>1</mn><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>, for <span><math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></math></span>, admitting the Ree group <span><math><mrow><msup><mrow></mrow><mrow><mn>2</mn></mrow></msup><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>q</mi><mo>)</mo></mrow></mrow></math></span> as their automorphism groups.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"5 ","pages":"Article 100137"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X2400003X/pdfft?md5=874ac10905c9399343d40e6310933a30&pid=1-s2.0-S2666657X2400003X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X2400003X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recent classification of flag-transitive 2-designs with parameters (v,k,λ) whose replication number r is coprime to λ gives rise to eight possible infinite families of 2-designs, some of which are with new parameters. In this note, we give explicit constructions for two of these families of 2-designs, and show that for a given positive integer q=32n+127, there exist 2-designs with parameters (q3+1,qi,qi1), for i=1,2, admitting the Ree group 2G2(q) as their automorphism groups.

里氏群作为整块设计的自变群
最近对参数为 (v,k,λ) 且复制数 r 与 λ 共素数的旗反 2 设计的分类,产生了八个可能的无穷 2 设计族,其中一些带有新参数。在本注中,我们给出了其中两个 2-设计族的明确构造,并证明对于给定的正整数 q=32n+1⩾27, 存在参数为 (q3+1,qi,qi-1) 的 2-设计,对于 i=1,2,接纳里氏组 2G2(q)作为其自形群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信