smdi: an R package to perform structural missing data investigations on partially observed confounders in real-world evidence studies.

IF 2.5 Q2 HEALTH CARE SCIENCES & SERVICES
JAMIA Open Pub Date : 2024-01-31 eCollection Date: 2024-04-01 DOI:10.1093/jamiaopen/ooae008
Janick Weberpals, Sudha R Raman, Pamela A Shaw, Hana Lee, Bradley G Hammill, Sengwee Toh, John G Connolly, Kimberly J Dandreo, Fang Tian, Wei Liu, Jie Li, José J Hernández-Muñoz, Robert J Glynn, Rishi J Desai
{"title":"smdi: an R package to perform structural missing data investigations on partially observed confounders in real-world evidence studies.","authors":"Janick Weberpals, Sudha R Raman, Pamela A Shaw, Hana Lee, Bradley G Hammill, Sengwee Toh, John G Connolly, Kimberly J Dandreo, Fang Tian, Wei Liu, Jie Li, José J Hernández-Muñoz, Robert J Glynn, Rishi J Desai","doi":"10.1093/jamiaopen/ooae008","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Partially observed confounder data pose a major challenge in statistical analyses aimed to inform causal inference using electronic health records (EHRs). While analytic approaches such as imputation are available, assumptions on underlying missingness patterns and mechanisms must be verified. We aimed to develop a toolkit to streamline missing data diagnostics to guide choice of analytic approaches based on meeting necessary assumptions.</p><p><strong>Materials and methods: </strong>We developed the smdi (structural missing data investigations) R package based on results of a previous simulation study which considered structural assumptions of common missing data mechanisms in EHR.</p><p><strong>Results: </strong>smdi enables users to run principled missing data investigations on partially observed confounders and implement functions to visualize, describe, and infer potential missingness patterns and mechanisms based on observed data.</p><p><strong>Conclusions: </strong>The smdi R package is freely available on CRAN and can provide valuable insights into underlying missingness patterns and mechanisms and thereby help improve the robustness of real-world evidence studies.</p>","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":"7 1","pages":"ooae008"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833461/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Partially observed confounder data pose a major challenge in statistical analyses aimed to inform causal inference using electronic health records (EHRs). While analytic approaches such as imputation are available, assumptions on underlying missingness patterns and mechanisms must be verified. We aimed to develop a toolkit to streamline missing data diagnostics to guide choice of analytic approaches based on meeting necessary assumptions.

Materials and methods: We developed the smdi (structural missing data investigations) R package based on results of a previous simulation study which considered structural assumptions of common missing data mechanisms in EHR.

Results: smdi enables users to run principled missing data investigations on partially observed confounders and implement functions to visualize, describe, and infer potential missingness patterns and mechanisms based on observed data.

Conclusions: The smdi R package is freely available on CRAN and can provide valuable insights into underlying missingness patterns and mechanisms and thereby help improve the robustness of real-world evidence studies.

smdi:一个 R 软件包,用于对真实世界证据研究中部分观察到的混杂因素进行结构性缺失数据调查。
目的:在利用电子健康记录(EHR)进行旨在为因果推断提供信息的统计分析中,部分观测到的混杂因素数据是一项重大挑战。虽然有诸如估算等分析方法,但必须对基本缺失模式和机制的假设进行验证。我们的目标是开发一个工具包来简化缺失数据诊断,以便在满足必要假设的基础上指导分析方法的选择:结果:smdi 使用户能够对部分观察到的混杂因素进行有原则的缺失数据调查,并根据观察到的数据实现可视化、描述和推断潜在缺失模式和机制的功能:smdi R软件包可在CRAN上免费获取,它能为潜在的缺失模式和机制提供有价值的见解,从而有助于提高真实世界证据研究的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JAMIA Open
JAMIA Open Medicine-Health Informatics
CiteScore
4.10
自引率
4.80%
发文量
102
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信