Vanessa Klapp, Norma Bloy, Carlos Jiménez-Cortegana, Aitziber Buqué, Giulia Petroni
{"title":"Flow cytometry-assisted quantification of cell cycle arrest in cancer cells treated with CDK4/6 inhibitors.","authors":"Vanessa Klapp, Norma Bloy, Carlos Jiménez-Cortegana, Aitziber Buqué, Giulia Petroni","doi":"10.1016/bs.mcb.2023.02.018","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (i.e., palbociclib, abemaciclib, and ribociclib) are well known for their capacity to mediate cytostatic effects by promoting cell cycle arrest in the G<sub>1</sub> phase, thus inhibiting cancer cell proliferation. Cytostatic effects induced by CDK4/6 inhibitors can be transient or lead to a permanent state of cell cycle arrest, commonly defined as cellular senescence. Induction of senescence is often associated to metabolic modifications and to the acquisition of a senescence-associated secretory phenotype (SASP) by cancer cells, which in turn can promote or limit antitumor immunity (and thus the efficacy of CDK4/6 inhibitors) depending on SASP components. Thus, although accumulating evidence suggests that anti-cancer effects of CDK4/6 inhibitors also depend on the promotion of antitumor immune responses, assessing cell cycle arrest and progression in cells treated with palbociclib remains a key approach for investigating the efficacy of CDK4/6 inhibitors. Here, we describe a method to assess cell cycle distribution simultaneously with active DNA replication by flow cytometry in cultured hormone receptor-positive breast cancer MCF7 cells.</p>","PeriodicalId":18437,"journal":{"name":"Methods in cell biology","volume":"181 ","pages":"197-212"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mcb.2023.02.018","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (i.e., palbociclib, abemaciclib, and ribociclib) are well known for their capacity to mediate cytostatic effects by promoting cell cycle arrest in the G1 phase, thus inhibiting cancer cell proliferation. Cytostatic effects induced by CDK4/6 inhibitors can be transient or lead to a permanent state of cell cycle arrest, commonly defined as cellular senescence. Induction of senescence is often associated to metabolic modifications and to the acquisition of a senescence-associated secretory phenotype (SASP) by cancer cells, which in turn can promote or limit antitumor immunity (and thus the efficacy of CDK4/6 inhibitors) depending on SASP components. Thus, although accumulating evidence suggests that anti-cancer effects of CDK4/6 inhibitors also depend on the promotion of antitumor immune responses, assessing cell cycle arrest and progression in cells treated with palbociclib remains a key approach for investigating the efficacy of CDK4/6 inhibitors. Here, we describe a method to assess cell cycle distribution simultaneously with active DNA replication by flow cytometry in cultured hormone receptor-positive breast cancer MCF7 cells.
期刊介绍:
For over fifty years, Methods in Cell Biology has helped researchers answer the question "What method should I use to study this cell biology problem?" Edited by leaders in the field, each thematic volume provides proven, state-of-art techniques, along with relevant historical background and theory, to aid researchers in efficient design and effective implementation of experimental methodologies. Over its many years of publication, Methods in Cell Biology has built up a deep library of biological methods to study model developmental organisms, organelles and cell systems, as well as comprehensive coverage of microscopy and other analytical approaches.