Changes in ATPase activity, antioxidant enzymes and proline biosynthesis in yeast Candida guilliermondii NP-4 under X-irradiation.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
ACS Applied Bio Materials Pub Date : 2024-04-01 Epub Date: 2024-02-03 DOI:10.1007/s10863-024-10003-4
Hasmik Karapetyan, Syuzan Marutyan, Anna Muradyan, Hamlet Badalyan, Seda V Marutyan, Karen Trchounian
{"title":"Changes in ATPase activity, antioxidant enzymes and proline biosynthesis in yeast Candida guilliermondii NP-4 under X-irradiation.","authors":"Hasmik Karapetyan, Syuzan Marutyan, Anna Muradyan, Hamlet Badalyan, Seda V Marutyan, Karen Trchounian","doi":"10.1007/s10863-024-10003-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the effects of X-radiation on ATPase activity and antioxidant enzyme activity, particularly enzymes involved in proline biosynthesis, in yeast C. guilliermondii NP-4. Moreover, the study examined the post-irradiation repair processes in these cells. Results showed that X-irradiation at a dose of 300 Gy led to an increase in catalase (CAT) and superoxide dismutase (SOD) activity, as well as, an increase in the CAT/SOD ratio in C. guilliermondii NP-4. The repair of radiation-induced damage requires a substantial amount of energy, resulting in an increased demand for ATP in the irradiated and repaired yeasts. Consequently, the total and FoF<sub>1</sub>-ATPase activity in yeast homogenates and mitochondria increased after X-irradiation and post-irradiation repair. It was showed an increase in the activity of proline biosynthesis enzymes (ornithine transaminase and proline-5-carboxylate reductase) in X-irradiated C. guilliermondii NP-4, which remained elevated even after post-irradiation repair. As a result, the proline levels in X-irradiated and repaired yeasts were higher than those in non-irradiated cells. These findings suggest that proline may have a radioprotective effect on X-irradiated C. guilliermondii NP-4 yeasts. Taken together this study provides insights into the effects of X-radiation on ATPase activity, antioxidant enzyme activity, and proline biosynthesis in C. guilliermondii NP-4 yeast cells, highlighting the potential radioprotective properties of proline in X-irradiated yeasts.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10863-024-10003-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effects of X-radiation on ATPase activity and antioxidant enzyme activity, particularly enzymes involved in proline biosynthesis, in yeast C. guilliermondii NP-4. Moreover, the study examined the post-irradiation repair processes in these cells. Results showed that X-irradiation at a dose of 300 Gy led to an increase in catalase (CAT) and superoxide dismutase (SOD) activity, as well as, an increase in the CAT/SOD ratio in C. guilliermondii NP-4. The repair of radiation-induced damage requires a substantial amount of energy, resulting in an increased demand for ATP in the irradiated and repaired yeasts. Consequently, the total and FoF1-ATPase activity in yeast homogenates and mitochondria increased after X-irradiation and post-irradiation repair. It was showed an increase in the activity of proline biosynthesis enzymes (ornithine transaminase and proline-5-carboxylate reductase) in X-irradiated C. guilliermondii NP-4, which remained elevated even after post-irradiation repair. As a result, the proline levels in X-irradiated and repaired yeasts were higher than those in non-irradiated cells. These findings suggest that proline may have a radioprotective effect on X-irradiated C. guilliermondii NP-4 yeasts. Taken together this study provides insights into the effects of X-radiation on ATPase activity, antioxidant enzyme activity, and proline biosynthesis in C. guilliermondii NP-4 yeast cells, highlighting the potential radioprotective properties of proline in X-irradiated yeasts.

Abstract Image

X 射线照射下酵母 Candida guilliermondii NP-4 中 ATP 酶活性、抗氧化酶和脯氨酸生物合成的变化
本研究调查了 X 射线对 C. guilliermondii NP-4 酵母菌中 ATPase 活性和抗氧化酶活性的影响,特别是对参与脯氨酸生物合成的酶的影响。此外,研究还考察了这些细胞的辐照后修复过程。结果表明,剂量为 300 Gy 的 X 射线辐照导致过氧化氢酶(CAT)和超氧化物歧化酶(SOD)活性增加,CAT/SOD 比率也增加。辐射引起的损伤修复需要大量能量,这导致辐照酵母和修复酵母对 ATP 的需求增加。因此,酵母匀浆和线粒体中的总 ATP 酶和 FoF1-ATP 酶活性在 X 射线照射和照射后修复后有所增加。X 射线辐照后的 C. guilliermondii NP-4 中脯氨酸生物合成酶(鸟氨酸转氨酶和脯氨酸-5-羧酸还原酶)的活性增加,甚至在辐照后修复后仍保持升高。因此,经 X 射线辐照和修复的酵母中的脯氨酸水平高于未受辐照的细胞。这些发现表明,脯氨酸可能对受到 X 射线辐射的 C. guilliermondii NP-4 酵母菌具有辐射保护作用。总之,这项研究深入揭示了 X 射线对 C. guilliermondii NP-4 酵母菌细胞中 ATP 酶活性、抗氧化酶活性和脯氨酸生物合成的影响,突出了脯氨酸在 X 射线照射酵母菌中的潜在辐射防护特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信