Dovini Jayasinghe, Md. Moksedul Momin, Kerri Beckmann, Elina Hyppönen, Beben Benyamin, S. Hong Lee
{"title":"Mitigating type 1 error inflation and power loss in GxE PRS: Genotype–environment interaction in polygenic risk score models","authors":"Dovini Jayasinghe, Md. Moksedul Momin, Kerri Beckmann, Elina Hyppönen, Beben Benyamin, S. Hong Lee","doi":"10.1002/gepi.22546","DOIUrl":null,"url":null,"abstract":"<p>The use of polygenic risk score (PRS) models has transformed the field of genetics by enabling the prediction of complex traits and diseases based on an individual's genetic profile. However, the impact of genotype–environment interaction (GxE) on the performance and applicability of PRS models remains a crucial aspect to be explored. Currently, existing genotype–environment interaction polygenic risk score (GxE PRS) models are often inappropriately used, which can result in inflated type 1 error rates and compromised results. In this study, we propose novel GxE PRS models that jointly incorporate additive and interaction genetic effects although also including an additional quadratic term for nongenetic covariates, enhancing their robustness against model misspecification. Through extensive simulations, we demonstrate that our proposed models outperform existing models in terms of controlling type 1 error rates and enhancing statistical power. Furthermore, we apply the proposed models to real data, and report significant GxE effects. Specifically, we highlight the impact of our models on both quantitative and binary traits. For quantitative traits, we uncover the GxE modulation of genetic effects on body mass index by alcohol intake frequency. In the case of binary traits, we identify the GxE modulation of genetic effects on hypertension by waist-to-hip ratio. These findings underscore the importance of employing a robust model that effectively controls type 1 error rates, thus preventing the occurrence of spurious GxE signals. To facilitate the implementation of our approach, we have developed an innovative R software package called GxEprs, specifically designed to detect and estimate GxE effects. Overall, our study highlights the importance of accurate GxE modeling and its implications for genetic risk prediction, although providing a practical tool to support further research in this area.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"48 2","pages":"85-100"},"PeriodicalIF":1.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gepi.22546","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gepi.22546","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
The use of polygenic risk score (PRS) models has transformed the field of genetics by enabling the prediction of complex traits and diseases based on an individual's genetic profile. However, the impact of genotype–environment interaction (GxE) on the performance and applicability of PRS models remains a crucial aspect to be explored. Currently, existing genotype–environment interaction polygenic risk score (GxE PRS) models are often inappropriately used, which can result in inflated type 1 error rates and compromised results. In this study, we propose novel GxE PRS models that jointly incorporate additive and interaction genetic effects although also including an additional quadratic term for nongenetic covariates, enhancing their robustness against model misspecification. Through extensive simulations, we demonstrate that our proposed models outperform existing models in terms of controlling type 1 error rates and enhancing statistical power. Furthermore, we apply the proposed models to real data, and report significant GxE effects. Specifically, we highlight the impact of our models on both quantitative and binary traits. For quantitative traits, we uncover the GxE modulation of genetic effects on body mass index by alcohol intake frequency. In the case of binary traits, we identify the GxE modulation of genetic effects on hypertension by waist-to-hip ratio. These findings underscore the importance of employing a robust model that effectively controls type 1 error rates, thus preventing the occurrence of spurious GxE signals. To facilitate the implementation of our approach, we have developed an innovative R software package called GxEprs, specifically designed to detect and estimate GxE effects. Overall, our study highlights the importance of accurate GxE modeling and its implications for genetic risk prediction, although providing a practical tool to support further research in this area.
期刊介绍:
Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations.
Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.