Personalized Impression Generation for PET Reports Using Large Language Models

IF 2.9 2区 工程技术 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Xin Tie, Muheon Shin, Ali Pirasteh, Nevein Ibrahim, Zachary Huemann, Sharon M. Castellino, Kara M. Kelly, John Garrett, Junjie Hu, Steve Y. Cho, Tyler J. Bradshaw
{"title":"Personalized Impression Generation for PET Reports Using Large Language Models","authors":"Xin Tie, Muheon Shin, Ali Pirasteh, Nevein Ibrahim, Zachary Huemann, Sharon M. Castellino, Kara M. Kelly, John Garrett, Junjie Hu, Steve Y. Cho, Tyler J. Bradshaw","doi":"10.1007/s10278-024-00985-3","DOIUrl":null,"url":null,"abstract":"<p>Large language models (LLMs) have shown promise in accelerating radiology reporting by summarizing clinical findings into impressions. However, automatic impression generation for whole-body PET reports presents unique challenges and has received little attention. Our study aimed to evaluate whether LLMs can create clinically useful impressions for PET reporting. To this end, we fine-tuned twelve open-source language models on a corpus of 37,370 retrospective PET reports collected from our institution. All models were trained using the teacher-forcing algorithm, with the report findings and patient information as input and the original clinical impressions as reference. An extra input token encoded the reading physician’s identity, allowing models to learn physician-specific reporting styles. To compare the performances of different models, we computed various automatic evaluation metrics and benchmarked them against physician preferences, ultimately selecting PEGASUS as the top LLM. To evaluate its clinical utility, three nuclear medicine physicians assessed the PEGASUS-generated impressions and original clinical impressions across 6 quality dimensions (3-point scales) and an overall utility score (5-point scale). Each physician reviewed 12 of their own reports and 12 reports from other physicians. When physicians assessed LLM impressions generated in their own style, 89% were considered clinically acceptable, with a mean utility score of 4.08/5. On average, physicians rated these personalized impressions as comparable in overall utility to the impressions dictated by other physicians (4.03, P = 0.41). In summary, our study demonstrated that personalized impressions generated by PEGASUS were clinically useful in most cases, highlighting its potential to expedite PET reporting by automatically drafting impressions.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":"245 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-00985-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Large language models (LLMs) have shown promise in accelerating radiology reporting by summarizing clinical findings into impressions. However, automatic impression generation for whole-body PET reports presents unique challenges and has received little attention. Our study aimed to evaluate whether LLMs can create clinically useful impressions for PET reporting. To this end, we fine-tuned twelve open-source language models on a corpus of 37,370 retrospective PET reports collected from our institution. All models were trained using the teacher-forcing algorithm, with the report findings and patient information as input and the original clinical impressions as reference. An extra input token encoded the reading physician’s identity, allowing models to learn physician-specific reporting styles. To compare the performances of different models, we computed various automatic evaluation metrics and benchmarked them against physician preferences, ultimately selecting PEGASUS as the top LLM. To evaluate its clinical utility, three nuclear medicine physicians assessed the PEGASUS-generated impressions and original clinical impressions across 6 quality dimensions (3-point scales) and an overall utility score (5-point scale). Each physician reviewed 12 of their own reports and 12 reports from other physicians. When physicians assessed LLM impressions generated in their own style, 89% were considered clinically acceptable, with a mean utility score of 4.08/5. On average, physicians rated these personalized impressions as comparable in overall utility to the impressions dictated by other physicians (4.03, P = 0.41). In summary, our study demonstrated that personalized impressions generated by PEGASUS were clinically useful in most cases, highlighting its potential to expedite PET reporting by automatically drafting impressions.

利用大型语言模型为 PET 报告生成个性化印象
大语言模型(LLM)通过将临床发现总结为印象,在加速放射学报告方面已显示出良好的前景。然而,全身 PET 报告的自动印象生成却面临着独特的挑战,很少受到关注。我们的研究旨在评估 LLM 能否为 PET 报告生成临床有用的印象。为此,我们在本机构收集的 37,370 份回顾性 PET 报告语料库上对 12 个开源语言模型进行了微调。所有模型均采用教师强迫算法进行训练,以报告结果和患者信息作为输入,原始临床印象作为参考。额外的输入标记对阅读医生的身份进行编码,使模型能够学习医生特定的报告风格。为了比较不同模型的性能,我们计算了各种自动评估指标,并根据医生的偏好进行了基准测试,最终选择 PEGASUS 作为最佳 LLM。为了评估 PEGASUS 的临床实用性,三名核医学医生从 6 个质量维度(3 分制)和一个总体实用性评分(5 分制)对 PEGASUS 生成的印象和原始临床印象进行了评估。每位医生都审查了自己的 12 份报告和其他医生的 12 份报告。当医生评估以自己的风格生成的 LLM 印象时,89% 被认为在临床上是可接受的,平均效用分数为 4.08/5。平均而言,医生对这些个性化印象的总体效用评价与其他医生口述的印象相当(4.03,P = 0.41)。总之,我们的研究表明,PEGASUS 生成的个性化印象在大多数情况下都具有临床实用性,突显了其通过自动起草印象加快 PET 报告的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Digital Imaging
Journal of Digital Imaging 医学-核医学
CiteScore
7.50
自引率
6.80%
发文量
192
审稿时长
6-12 weeks
期刊介绍: The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals. Suggested Topics PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信