{"title":"Hydrostatic pressure impedes the degradation of sinking copepod carcasses and fecal pellets","authors":"Belén Franco-Cisterna, Peter Stief, Ronnie N Glud","doi":"10.1093/plankt/fbae002","DOIUrl":null,"url":null,"abstract":"Fast-sinking zooplankton carcasses and fecal pellets appear to contribute significantly to the vertical transport of particulate organic carbon (POC), partly because of low temperature that decreases microbial degradation during the descent into the deep ocean. Increasing hydrostatic pressure could further reduce the degradation efficiency of sinking POC, but this effect remains unexplored. Here, the degradation of carcasses and fecal pellets of the abundant marine copepod Calanus finmarchicus was experimentally studied as a function of pressure (0.1–100 MPa). Samples were either exposed to elevated pressure in short 1-day incubations or a gradual pressure increase, simulating continuous particle sinking during a 20-day incubation. Both experiments revealed gradual inhibition of microbial respiration in the pressure range of 20–100 MPa, corresponding to 2–10-km depth. This suggests that hydrostatic pressure impedes carbon mineralization of fast-sinking carcasses and fecal pellets and enhances the deep-sea deposition rate of zooplankton-derived organic material.","PeriodicalId":16800,"journal":{"name":"Journal of Plankton Research","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plankton Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/plankt/fbae002","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Fast-sinking zooplankton carcasses and fecal pellets appear to contribute significantly to the vertical transport of particulate organic carbon (POC), partly because of low temperature that decreases microbial degradation during the descent into the deep ocean. Increasing hydrostatic pressure could further reduce the degradation efficiency of sinking POC, but this effect remains unexplored. Here, the degradation of carcasses and fecal pellets of the abundant marine copepod Calanus finmarchicus was experimentally studied as a function of pressure (0.1–100 MPa). Samples were either exposed to elevated pressure in short 1-day incubations or a gradual pressure increase, simulating continuous particle sinking during a 20-day incubation. Both experiments revealed gradual inhibition of microbial respiration in the pressure range of 20–100 MPa, corresponding to 2–10-km depth. This suggests that hydrostatic pressure impedes carbon mineralization of fast-sinking carcasses and fecal pellets and enhances the deep-sea deposition rate of zooplankton-derived organic material.
期刊介绍:
Journal of Plankton Research publishes innovative papers that significantly advance the field of plankton research, and in particular, our understanding of plankton dynamics.