Predicting short-term PM2.5 concentrations at fine temporal resolutions using a multi-branch temporal graph convolutional neural network

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Qingfeng Guan, Jingyi Wang, Shuliang Ren, Huan Gao, Zhewei Liang, Junyi Wang, Yao Yao
{"title":"Predicting short-term PM2.5 concentrations at fine temporal resolutions using a multi-branch temporal graph convolutional neural network","authors":"Qingfeng Guan, Jingyi Wang, Shuliang Ren, Huan Gao, Zhewei Liang, Junyi Wang, Yao Yao","doi":"10.1080/13658816.2024.2310737","DOIUrl":null,"url":null,"abstract":"Predicting PM2.5 concentrations at an hourly temporal resolution in urban areas can provide key information for public health protection. The spatiotemporal dependency among monitoring stations and...","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/13658816.2024.2310737","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting PM2.5 concentrations at an hourly temporal resolution in urban areas can provide key information for public health protection. The spatiotemporal dependency among monitoring stations and...
利用多分支时间图卷积神经网络预测精细时间分辨率下的 PM2.5 短期浓度
以每小时的时间分辨率预测城市地区的 PM2.5 浓度可为公共健康保护提供关键信息。各监测站之间的时空依赖性和对空气质量的影响,都会影响PM2.5的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信