Millimeter and Sub-millimeter Wave Transmission Through a Radome Covered by Water: The Impact of the Shape of Water

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Paul Bouquin, Daniel Bourreau, Alain Peden
{"title":"Millimeter and Sub-millimeter Wave Transmission Through a Radome Covered by Water: The Impact of the Shape of Water","authors":"Paul Bouquin, Daniel Bourreau, Alain Peden","doi":"10.1007/s10762-024-00969-y","DOIUrl":null,"url":null,"abstract":"<p>Rainfall can reduce the radar signal through a radome. The effects of different water layers on the radome transmission are studied using quasi-optical measurement from 26 to 330 GHz including water permittivity characterization. The water is deposited as drops of different sizes or as a uniform layer while keeping a constant volume, highlighting the importance of the control of the total wet surface for radar applications. A compact model is proposed to predict the signal loss due to water on the radome depending on the rain flow.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00969-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Rainfall can reduce the radar signal through a radome. The effects of different water layers on the radome transmission are studied using quasi-optical measurement from 26 to 330 GHz including water permittivity characterization. The water is deposited as drops of different sizes or as a uniform layer while keeping a constant volume, highlighting the importance of the control of the total wet surface for radar applications. A compact model is proposed to predict the signal loss due to water on the radome depending on the rain flow.

Abstract Image

毫米波和亚毫米波通过被水覆盖的雷达罩的传输:水的形状的影响
降雨会降低通过雷达罩的雷达信号。我们利用 26 至 330 千兆赫的准光学测量(包括水介电常数表征)研究了不同水层对雷达罩传输的影响。在保持体积恒定的情况下,水以不同大小的水滴或均匀水层的形式沉积,突出了雷达应用中控制总湿表面的重要性。提出了一个紧凑的模型,用于预测雷达罩上的水根据雨流情况造成的信号损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Infrared, Millimeter, and Terahertz Waves
Journal of Infrared, Millimeter, and Terahertz Waves 工程技术-工程:电子与电气
CiteScore
6.20
自引率
6.90%
发文量
51
审稿时长
3 months
期刊介绍: The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications. Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms). Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信