Lifespan estimates of solutions to the weakly coupled system of semilinear wave equations with space dependent dampings

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Sen Ming, Han Yang, Xiongmei Fan
{"title":"Lifespan estimates of solutions to the weakly coupled system of semilinear wave equations with space dependent dampings","authors":"Sen Ming, Han Yang, Xiongmei Fan","doi":"10.4310/cms.2024.v22.n2.a4","DOIUrl":null,"url":null,"abstract":"$\\def \\lv{\\lvert}\\def\\rv{\\rvert}$ This paper is devoted to investigating the weakly coupled system of semilinear wave equations with space dependent dampings and power nonlinearities ${\\lv v \\rv}^p, {\\lv u \\rv}^q$, derivative nonlinearities ${\\lv v_t \\rv}^p, {\\lv u_t \\rv}^q$, mixed nonlinearities ${\\lv v \\rv}^q, {\\lv u_t \\rv}^p$, combined nonlinearities ${\\lv v_t \\rv}^{p_1} + {\\lv v \\rv}^{q_1}, {\\lv u_t \\rv}^{p_2} + {\\lv u \\rv}^{q_2}$, combined and power nonlinearities ${\\lv v_t \\rv}^{p_1} + {\\lv v \\rv}^{q_1}, {\\lv u \\rv}^{q_2}$, combined and derivative nonlinearities ${\\lv v_t \\rv}^{p_1} + {\\lv v \\rv}^{q_1}, {\\lv u_t \\rv}^{p_2}$, respectively. Formation of singularities and lifespan estimates of solutions to the problem in the sub-critical and critical cases are illustrated by making use of test function technique. The main innovation is that upper bound lifespan estimates of solutions are associated with the Strauss exponent and Glassey exponent.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n2.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

$\def \lv{\lvert}\def\rv{\rvert}$ This paper is devoted to investigating the weakly coupled system of semilinear wave equations with space dependent dampings and power nonlinearities ${\lv v \rv}^p, {\lv u \rv}^q$, derivative nonlinearities ${\lv v_t \rv}^p, {\lv u_t \rv}^q$, mixed nonlinearities ${\lv v \rv}^q, {\lv u_t \rv}^p$, combined nonlinearities ${\lv v_t \rv}^{p_1} + {\lv v \rv}^{q_1}, {\lv u_t \rv}^{p_2} + {\lv u \rv}^{q_2}$, combined and power nonlinearities ${\lv v_t \rv}^{p_1} + {\lv v \rv}^{q_1}, {\lv u \rv}^{q_2}$, combined and derivative nonlinearities ${\lv v_t \rv}^{p_1} + {\lv v \rv}^{q_1}, {\lv u_t \rv}^{p_2}$, respectively. Formation of singularities and lifespan estimates of solutions to the problem in the sub-critical and critical cases are illustrated by making use of test function technique. The main innovation is that upper bound lifespan estimates of solutions are associated with the Strauss exponent and Glassey exponent.
具有空间相关阻尼的半线性波方程弱耦合系统解的寿命估计
$def \lv{\lvert}\def\rv{\rvert}$ 本文致力于研究半线性波方程的弱耦合系统,该系统具有空间相关阻尼和功率非线性特性 ${\lv v \rv}^p、{导数非线性 ${\lv v_t \rv}^p,{\lv u_t \rv}^q$,混合非线性 ${\lv v \rv}^q,{\lv u_t \rv}^p$,组合非线性 ${\lv v_t \rv}^{p_1}。+ {\lv v \rv}^{q_1}, {\lv u_t \rv}^{p_2}+ {\lv u \rv}^{q_2}$,组合非线性和功率非线性 ${\lv v_t \rv}^{p_1}。+ {\lv v \rv}^{q_1},{\lv u \rv}^{q_2}$,组合和导数非线性 ${\lv v_t \rv}^{p_1}。+ {\lv v \rv}^{q_1},{\lv u_t \rv}^{p_2}$。利用检验函数技术说明了在次临界和临界情况下问题解的奇点形成和寿命估计。主要创新之处在于解的上限寿命估计值与 Strauss 指数和 Glassey 指数相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信