On global solutions to the inhomogeneous, incompressible Navier–Stokes equations with temperature-dependent coefficients

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Bijun Zuo
{"title":"On global solutions to the inhomogeneous, incompressible Navier–Stokes equations with temperature-dependent coefficients","authors":"Bijun Zuo","doi":"10.4310/cms.2024.v22.n2.a6","DOIUrl":null,"url":null,"abstract":"In this paper, we study the initial-boundary value problem for the full inhomogeneous, incompressible Navier–Stokes equations with temperature-dependent viscosity and heat conductivity coefficients. The viscosity coefficient may be degenerate in the sense that it may vanish in the region of absolutely zero temperature. Our main result is to prove the global existence of large weak solutions to such a system. The proof is based on a three-level approximate scheme, the Galerkin method, De Giorgi’s method, and appropriate compactness arguments.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"16 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n2.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the initial-boundary value problem for the full inhomogeneous, incompressible Navier–Stokes equations with temperature-dependent viscosity and heat conductivity coefficients. The viscosity coefficient may be degenerate in the sense that it may vanish in the region of absolutely zero temperature. Our main result is to prove the global existence of large weak solutions to such a system. The proof is based on a three-level approximate scheme, the Galerkin method, De Giorgi’s method, and appropriate compactness arguments.
关于具有温度相关系数的非均质不可压缩纳维-斯托克斯方程的全局解决方案
本文研究了具有与温度相关的粘性系数和导热系数的完全不均匀、不可压缩纳维-斯托克斯方程的初始边界值问题。粘度系数可能是退化的,即它可能在温度绝对为零的区域消失。我们的主要结果是证明这种系统的大弱解的全局存在性。证明基于三层近似方案、Galerkin 方法、De Giorgi 方法和适当的紧凑性论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
59
审稿时长
6 months
期刊介绍: Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信