{"title":"Unified asymptotic analysis and numerical simulations of singularly perturbed linear differential equations under various nonlocal boundary effects","authors":"Xianjin Chen, Chiun-Chang Lee, Masashi Mizuno","doi":"10.4310/cms.2024.v22.n2.a5","DOIUrl":null,"url":null,"abstract":"While being concerned with a singularly perturbed linear differential equation subject to integral boundary conditions, the exact solutions, in general, cannot be specified, and the validity of the maximum principle is unassurable. Hence, a problem arises: <i>how to identify the boundary asymptotics more precisely?</i> We develop a rigorous asymptotic method involving recovered boundary data to tackle the problem. A key ingredient of the approach is to transform the “nonlocal” boundary conditions into “local” boundary conditions. Then, we perform an “$\\varepsilon \\log \\varepsilon$-estimate” to obtain the refined boundary asymptotics of its solutions with respect to the singular perturbation parameter $\\varepsilon$. Furthermore, for the inhomogeneous case, diversified asymptotic behaviors including uniform boundedness and asymptotic blow-up are obtained. Numerical simulations and validations are also presented to further support the corresponding theoretical results.","PeriodicalId":50659,"journal":{"name":"Communications in Mathematical Sciences","volume":"37 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n2.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
While being concerned with a singularly perturbed linear differential equation subject to integral boundary conditions, the exact solutions, in general, cannot be specified, and the validity of the maximum principle is unassurable. Hence, a problem arises: how to identify the boundary asymptotics more precisely? We develop a rigorous asymptotic method involving recovered boundary data to tackle the problem. A key ingredient of the approach is to transform the “nonlocal” boundary conditions into “local” boundary conditions. Then, we perform an “$\varepsilon \log \varepsilon$-estimate” to obtain the refined boundary asymptotics of its solutions with respect to the singular perturbation parameter $\varepsilon$. Furthermore, for the inhomogeneous case, diversified asymptotic behaviors including uniform boundedness and asymptotic blow-up are obtained. Numerical simulations and validations are also presented to further support the corresponding theoretical results.
期刊介绍:
Covers modern applied mathematics in the fields of modeling, applied and stochastic analyses and numerical computations—on problems that arise in physical, biological, engineering, and financial applications. The journal publishes high-quality, original research articles, reviews, and expository papers.