Unified asymptotic analysis and numerical simulations of singularly perturbed linear differential equations under various nonlocal boundary effects

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xianjin Chen, Chiun-Chang Lee, Masashi Mizuno
{"title":"Unified asymptotic analysis and numerical simulations of singularly perturbed linear differential equations under various nonlocal boundary effects","authors":"Xianjin Chen, Chiun-Chang Lee, Masashi Mizuno","doi":"10.4310/cms.2024.v22.n2.a5","DOIUrl":null,"url":null,"abstract":"While being concerned with a singularly perturbed linear differential equation subject to integral boundary conditions, the exact solutions, in general, cannot be specified, and the validity of the maximum principle is unassurable. Hence, a problem arises: <i>how to identify the boundary asymptotics more precisely?</i> We develop a rigorous asymptotic method involving recovered boundary data to tackle the problem. A key ingredient of the approach is to transform the “nonlocal” boundary conditions into “local” boundary conditions. Then, we perform an “$\\varepsilon \\log \\varepsilon$-estimate” to obtain the refined boundary asymptotics of its solutions with respect to the singular perturbation parameter $\\varepsilon$. Furthermore, for the inhomogeneous case, diversified asymptotic behaviors including uniform boundedness and asymptotic blow-up are obtained. Numerical simulations and validations are also presented to further support the corresponding theoretical results.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n2.a5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

While being concerned with a singularly perturbed linear differential equation subject to integral boundary conditions, the exact solutions, in general, cannot be specified, and the validity of the maximum principle is unassurable. Hence, a problem arises: how to identify the boundary asymptotics more precisely? We develop a rigorous asymptotic method involving recovered boundary data to tackle the problem. A key ingredient of the approach is to transform the “nonlocal” boundary conditions into “local” boundary conditions. Then, we perform an “$\varepsilon \log \varepsilon$-estimate” to obtain the refined boundary asymptotics of its solutions with respect to the singular perturbation parameter $\varepsilon$. Furthermore, for the inhomogeneous case, diversified asymptotic behaviors including uniform boundedness and asymptotic blow-up are obtained. Numerical simulations and validations are also presented to further support the corresponding theoretical results.
各种非局部边界效应下奇异扰动线性微分方程的统一渐近分析和数值模拟
虽然关注的是受积分边界条件限制的奇异扰动线性微分方程,但一般来说,无法指定精确解,最大原则的有效性也无法保证。因此,问题来了:如何更精确地确定边界渐近线?我们开发了一种涉及恢复边界数据的严格渐近方法来解决这个问题。该方法的一个关键要素是将 "非局部 "边界条件转化为 "局部 "边界条件。然后,我们进行"$\varepsilon \log \varepsilon$-估计",以获得其解相对于奇异扰动参数 $\varepsilon$ 的精细边界渐近线。此外,对于非均质情况,还得到了包括均匀有界性和渐近炸裂在内的多样化渐近行为。同时还给出了数值模拟和验证,以进一步支持相应的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信