Uniqueness of global weak solutions to the frame hydrodynamics for biaxial nematic phases in $\mathbb{R}^2$

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sirui Li, Chenchen Wang, Jie Xu
{"title":"Uniqueness of global weak solutions to the frame hydrodynamics for biaxial nematic phases in $\\mathbb{R}^2$","authors":"Sirui Li, Chenchen Wang, Jie Xu","doi":"10.4310/cms.2024.v22.n2.a7","DOIUrl":null,"url":null,"abstract":"We consider the hydrodynamics for biaxial nematic phases described by a field of orthonormal frame, which can be derived from a molecular-theory-based tensor model. We prove the uniqueness of global weak solutions to the Cauchy problem of the frame hydrodynamics in dimension two. The proof is mainly based on the suitable weaker energy estimates within the Littlewood–Paley analysis. We take full advantage of the estimates of nonlinear terms with rotational derivatives on $SO(3)$, together with cancellation relations and dissipative structures of the biaxial frame system.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cms.2024.v22.n2.a7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the hydrodynamics for biaxial nematic phases described by a field of orthonormal frame, which can be derived from a molecular-theory-based tensor model. We prove the uniqueness of global weak solutions to the Cauchy problem of the frame hydrodynamics in dimension two. The proof is mainly based on the suitable weaker energy estimates within the Littlewood–Paley analysis. We take full advantage of the estimates of nonlinear terms with rotational derivatives on $SO(3)$, together with cancellation relations and dissipative structures of the biaxial frame system.
$\mathbb{R}^2$ 中双轴向列相的框架流体力学全局弱解的唯一性
我们考虑了由正交框架场描述的双轴向列相的流体力学,该正交框架场可从基于分子理论的张量模型中导出。我们证明了二维框架流体力学 Cauchy 问题全局弱解的唯一性。证明主要基于 Littlewood-Paley 分析中合适的弱能量估计。我们充分利用了$SO(3)$上带有旋转导数的非线性项的估计,以及双轴框架系统的抵消关系和耗散结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信