S. M. Bhagya P. Samarakoon, M. A. Viraj J. Muthugala, Mohan Rajesh Elara
{"title":"Internal Rehearsals for a Reconfigurable Robot to Improve Area Coverage Performance","authors":"S. M. Bhagya P. Samarakoon, M. A. Viraj J. Muthugala, Mohan Rajesh Elara","doi":"10.1145/3643854","DOIUrl":null,"url":null,"abstract":"<p>Reconfigurable robots are deployed for applications demanding area coverage, such as cleaning and inspections. Reconfiguration per context, considering beyond a small set of predefined shapes, is crucial for area coverage performance. However, the existing area coverage methods of reconfigurable robots are not always effective and require improvements for ascertaining the intended goal. Therefore, this paper proposes a novel coverage strategy based on internal rehearsals to improve the area coverage performance of a reconfigurable robot. In this regard, a reconfigurable robot is embodied with the cognitive ability to predict the outcomes of its actions before executing them. A genetic algorithm uses the results of the internal rehearsals to determine a set of the robot’s coverage parameters, including positioning, heading, and reconfiguration, to maximize coverage in an obstacle cluster encountered by the robot. The experimental results confirm that the proposed method can significantly improve the area coverage performance of a reconfigurable robot.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643854","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable robots are deployed for applications demanding area coverage, such as cleaning and inspections. Reconfiguration per context, considering beyond a small set of predefined shapes, is crucial for area coverage performance. However, the existing area coverage methods of reconfigurable robots are not always effective and require improvements for ascertaining the intended goal. Therefore, this paper proposes a novel coverage strategy based on internal rehearsals to improve the area coverage performance of a reconfigurable robot. In this regard, a reconfigurable robot is embodied with the cognitive ability to predict the outcomes of its actions before executing them. A genetic algorithm uses the results of the internal rehearsals to determine a set of the robot’s coverage parameters, including positioning, heading, and reconfiguration, to maximize coverage in an obstacle cluster encountered by the robot. The experimental results confirm that the proposed method can significantly improve the area coverage performance of a reconfigurable robot.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.