Visualizing acoustic levitation with COMSOL Multiphysics and a simple experimental setup

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Francisco M. Muñoz-Pérez, Juan C. Castro-Palacio, Marcos H. Giménez, Juan A. Monsoriu
{"title":"Visualizing acoustic levitation with COMSOL Multiphysics and a simple experimental setup","authors":"Francisco M. Muñoz-Pérez,&nbsp;Juan C. Castro-Palacio,&nbsp;Marcos H. Giménez,&nbsp;Juan A. Monsoriu","doi":"10.1002/cae.22718","DOIUrl":null,"url":null,"abstract":"<p>We present a new virtual laboratory developed with COMSOL multiphysics for the simulation of an acoustic levitator, as well as a three-dimensional (3D) printed experimental setup. Our software application simulates the acoustic pressure field and its interaction with a set of particles. Students can interact with the system having the possibility to change the frequency and distance parameters between transducers in real time. We have also developed and shared for free use the 3D printing design files for the construction of the necessary components for the acoustic levitator, as well as the instructions for its experimental implementation. The experimental results are contrasted, along with those from the virtual laboratory, providing students with useful tools to understand and interpret the acoustic phenomenon in question.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cae.22718","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.22718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new virtual laboratory developed with COMSOL multiphysics for the simulation of an acoustic levitator, as well as a three-dimensional (3D) printed experimental setup. Our software application simulates the acoustic pressure field and its interaction with a set of particles. Students can interact with the system having the possibility to change the frequency and distance parameters between transducers in real time. We have also developed and shared for free use the 3D printing design files for the construction of the necessary components for the acoustic levitator, as well as the instructions for its experimental implementation. The experimental results are contrasted, along with those from the virtual laboratory, providing students with useful tools to understand and interpret the acoustic phenomenon in question.

Abstract Image

利用 COMSOL Multiphysics 和简单实验装置实现声悬浮可视化
我们介绍了利用 COMSOL 多物理场技术开发的新型虚拟实验室,用于模拟声学悬浮器以及三维(3D)打印实验装置。我们的软件应用程序模拟声压场及其与一组粒子的相互作用。学生可以与系统互动,实时改变频率和传感器之间的距离参数。我们还开发并免费共享了用于制造声学悬浮器必要组件的三维打印设计文件,以及实验实施说明。实验结果与虚拟实验室的结果进行了对比,为学生理解和解释相关声学现象提供了有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信