{"title":"Rapid accumulation and ascent precedes caldera forming eruption of low viscosity magma","authors":"Corin Jorgenson, Luca Caricchi, Massimo Chiaradia, Mónica Ágreda-López, Guido Giordano","doi":"10.1007/s00410-023-02091-z","DOIUrl":null,"url":null,"abstract":"<div><p>Mafic magma is commonly associated with effusive eruptions, however several mafic volcanoes throughout the globe have produced explosive eruptions. Here we present one such volcano – Colli Albani. Colli Albani is 20 km SE of Rome and produced seven large volume ignimbrites. Field observations, mineral chemistry, and Sr and Nd isotopes in clinopyroxene show that the high potassic, silica undersaturated and CO<span>\\(_{2}\\)</span>-rich magma typical of Colli Albani is produced by partial melting of a metasomatized mantle. Clinopyroxene based thermobarometry combined with thermal modelling, indicates rapid accumulation of magma into the shallow crust preceding the last caldera forming event (355 ka). The crystallization of high Mg# and high Cr<span>\\(_{2}\\)</span>O<span>\\(_{3}\\)</span> clinopyroxenes at low pressures and high temperatures indicates rapid magma ascent from the mantle. We suggest that a final rapid input of this deeply sourced magma destabilised the shallow and fast assembled magma reservoir and lead to the caldera forming event. Our findings have significant implications for the evaluation of the timescales of reactivation of Colli Albani and other similar long-quiescent calderas erupting low viscosity magmas, as rapid migration of magma to shallow reservoirs may result in short unrest periods prior to a large eruption.</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00410-023-02091-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-023-02091-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Mafic magma is commonly associated with effusive eruptions, however several mafic volcanoes throughout the globe have produced explosive eruptions. Here we present one such volcano – Colli Albani. Colli Albani is 20 km SE of Rome and produced seven large volume ignimbrites. Field observations, mineral chemistry, and Sr and Nd isotopes in clinopyroxene show that the high potassic, silica undersaturated and CO\(_{2}\)-rich magma typical of Colli Albani is produced by partial melting of a metasomatized mantle. Clinopyroxene based thermobarometry combined with thermal modelling, indicates rapid accumulation of magma into the shallow crust preceding the last caldera forming event (355 ka). The crystallization of high Mg# and high Cr\(_{2}\)O\(_{3}\) clinopyroxenes at low pressures and high temperatures indicates rapid magma ascent from the mantle. We suggest that a final rapid input of this deeply sourced magma destabilised the shallow and fast assembled magma reservoir and lead to the caldera forming event. Our findings have significant implications for the evaluation of the timescales of reactivation of Colli Albani and other similar long-quiescent calderas erupting low viscosity magmas, as rapid migration of magma to shallow reservoirs may result in short unrest periods prior to a large eruption.
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.