Convex Body Collision Detection Using the Signed Distance Function

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Pedro López-Adeva Fernández-Layos, Luis F.S. Merchante
{"title":"Convex Body Collision Detection Using the Signed Distance Function","authors":"Pedro López-Adeva Fernández-Layos,&nbsp;Luis F.S. Merchante","doi":"10.1016/j.cad.2024.103685","DOIUrl":null,"url":null,"abstract":"<div><p>We present a new algorithm to compute the minimum distance and penetration depth between two convex bodies represented by their Signed Distance Function (SDF). First, we formulate the problem as an optimization problem suitable for arbitrary non-convex bodies, and then we propose the ellipsoid algorithm to solve the problem when the two bodies are convex. Finally, we benchmark the algorithm and compare the results in collision detection against the popular Gilbert–Johnson–Keerthi (GJK) and Minkowski Portal Refinement (MPR) algorithms, which represent bodies using the support function. Results show that our algorithm has similar performance to both, providing penetration depth like MPR and, with better robustness, minimum distance like GJK. Our algorithm provides accurate and fast collision detection between implicitly modeled convex rigid bodies and is able to substitute existing algorithms in previous applications whenever the support function is replaced with the SDF.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524000125/pdfft?md5=8461bf077f6c01f40cc9b071ee24014f&pid=1-s2.0-S0010448524000125-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010448524000125","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new algorithm to compute the minimum distance and penetration depth between two convex bodies represented by their Signed Distance Function (SDF). First, we formulate the problem as an optimization problem suitable for arbitrary non-convex bodies, and then we propose the ellipsoid algorithm to solve the problem when the two bodies are convex. Finally, we benchmark the algorithm and compare the results in collision detection against the popular Gilbert–Johnson–Keerthi (GJK) and Minkowski Portal Refinement (MPR) algorithms, which represent bodies using the support function. Results show that our algorithm has similar performance to both, providing penetration depth like MPR and, with better robustness, minimum distance like GJK. Our algorithm provides accurate and fast collision detection between implicitly modeled convex rigid bodies and is able to substitute existing algorithms in previous applications whenever the support function is replaced with the SDF.

利用符号距离函数进行凸面车身碰撞检测
我们提出了一种新算法,用于计算两个凸体之间的最小距离和穿透深度,这两个凸体由它们的符号距离函数(SDF)表示。首先,我们将该问题表述为适用于任意非凸体的优化问题,然后我们提出了椭圆体算法来解决两个凸体之间的问题。最后,我们对该算法进行了基准测试,并将碰撞检测结果与流行的 Gilbert-Johnson-Keerthi (GJK) 算法和 Minkowski Portal Refinement (MPR) 算法进行了比较。结果表明,我们的算法与这两种算法性能相似,都能像 MPR 一样提供穿透深度,并能像 GJK 一样提供最小距离,而且鲁棒性更好。我们的算法能在隐式建模的凸刚体之间提供准确、快速的碰撞检测,而且只要用 SDF 代替支撑函数,就能替代以往应用中的现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信