On pattern-avoiding permutons

Frederik Garbe, Jan Hladký, Gábor Kun, Kristýna Pekárková
{"title":"On pattern-avoiding permutons","authors":"Frederik Garbe, Jan Hladký, Gábor Kun, Kristýna Pekárková","doi":"10.1002/rsa.21208","DOIUrl":null,"url":null,"abstract":"The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order <math altimg=\"urn:x-wiley:rsa:media:rsa21208:rsa21208-math-0001\" display=\"inline\" location=\"graphic/rsa21208-math-0001.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mi>k</mi>\n</mrow>\n$$ k $$</annotation>\n</semantics></math> have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most <math altimg=\"urn:x-wiley:rsa:media:rsa21208:rsa21208-math-0002\" display=\"inline\" location=\"graphic/rsa21208-math-0002.png\" overflow=\"scroll\">\n<semantics>\n<mrow>\n<mo stretchy=\"false\">(</mo>\n<mi>k</mi>\n<mo form=\"prefix\">−</mo>\n<mn>1</mn>\n<mo stretchy=\"false\">)</mo>\n</mrow>\n$$ \\left(k-1\\right) $$</annotation>\n</semantics></math> many, and this bound is sharp. We use this to give a simple proof of the “permutation removal lemma.”","PeriodicalId":20948,"journal":{"name":"Random Structures and Algorithms","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures and Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The theory of limits of permutations leads to limit objects called permutons, which are certain Borel measures on the unit square. We prove that permutons avoiding a given permutation of order k $$ k $$ have a particularly simple structure. Namely, almost every fiber of the disintegration of the permuton (say, along the x-axis) consists only of atoms, at most ( k 1 ) $$ \left(k-1\right) $$ many, and this bound is sharp. We use this to give a simple proof of the “permutation removal lemma.”
关于规避模式的 permutons
排列极限理论引出了称为 permutons 的极限对象,它们是单位平方上的某些博尔量。我们证明,避开阶数 k$$ k $$ 的给定置换的置换子具有特别简单的结构。也就是说,几乎每条分解 permuton 的纤维(比如说,沿着 x 轴)都只由原子组成,最多只有 (k-1)$$ \left(k-1\right) $$ 个,而且这个约束是尖锐的。我们利用这一点给出了 "包络去除稃证 "的简单证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信