Ability to Simulate Absorption and Melt Pool Dynamics for Laser Melting of Bare Aluminum Plate: Results and Insights from the 2022 Asynchronous AM-Bench Challenge
Brian J. Simonds, Jack Tanner, Alexandra Artusio-Glimpse, Niranjan Parab, Cang Zhao, Tao Sun, Paul A. Williams
{"title":"Ability to Simulate Absorption and Melt Pool Dynamics for Laser Melting of Bare Aluminum Plate: Results and Insights from the 2022 Asynchronous AM-Bench Challenge","authors":"Brian J. Simonds, Jack Tanner, Alexandra Artusio-Glimpse, Niranjan Parab, Cang Zhao, Tao Sun, Paul A. Williams","doi":"10.1007/s40192-023-00336-0","DOIUrl":null,"url":null,"abstract":"<p>The 2022 Asynchronous AM-Bench challenge was designed to test the ability of simulations to accurately predict laser power absorption as well as various melt pool behaviors (width, depth, and solidification) during laser melting of solid metal during stationary and scanned laser illumination. In this challenge, participants were asked to predict a series of experimental outcomes. Experimental data were obtained from a series of experiments performed at the Advanced Photon Source at Argonne National Laboratories in 2019. These experiments combined integrating sphere radiometry with high-speed X-ray imaging, allowing for the simultaneous recording of absolute laser power absorption and two-dimensional, projected images of the melt pool. All challenge problems were based on experiments using bare aluminum solid metal. Participants were provided with pertinent experimental information like laser power, scan speed, laser spot size, and material composition. Additionally, participants were given absorptance and X-ray imaging data from stationary and scanned laser experiments on solid Ti–6Al–4V that could be used for testing their models before attempting challenge problems. In total, this challenge received 56 submissions from eight different research groups for eight individual challenge problems. The data for this challenge, and associated information, are available for download from the NIST Public Data Repository. This paper summarizes the results from the 2022 Asynchronous AM-Bench challenge as well as discusses the lessons learned to help inform future challenges.</p>","PeriodicalId":13604,"journal":{"name":"Integrating Materials and Manufacturing Innovation","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrating Materials and Manufacturing Innovation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40192-023-00336-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The 2022 Asynchronous AM-Bench challenge was designed to test the ability of simulations to accurately predict laser power absorption as well as various melt pool behaviors (width, depth, and solidification) during laser melting of solid metal during stationary and scanned laser illumination. In this challenge, participants were asked to predict a series of experimental outcomes. Experimental data were obtained from a series of experiments performed at the Advanced Photon Source at Argonne National Laboratories in 2019. These experiments combined integrating sphere radiometry with high-speed X-ray imaging, allowing for the simultaneous recording of absolute laser power absorption and two-dimensional, projected images of the melt pool. All challenge problems were based on experiments using bare aluminum solid metal. Participants were provided with pertinent experimental information like laser power, scan speed, laser spot size, and material composition. Additionally, participants were given absorptance and X-ray imaging data from stationary and scanned laser experiments on solid Ti–6Al–4V that could be used for testing their models before attempting challenge problems. In total, this challenge received 56 submissions from eight different research groups for eight individual challenge problems. The data for this challenge, and associated information, are available for download from the NIST Public Data Repository. This paper summarizes the results from the 2022 Asynchronous AM-Bench challenge as well as discusses the lessons learned to help inform future challenges.
期刊介绍:
The journal will publish: Research that supports building a model-based definition of materials and processes that is compatible with model-based engineering design processes and multidisciplinary design optimization; Descriptions of novel experimental or computational tools or data analysis techniques, and their application, that are to be used for ICME; Best practices in verification and validation of computational tools, sensitivity analysis, uncertainty quantification, and data management, as well as standards and protocols for software integration and exchange of data; In-depth descriptions of data, databases, and database tools; Detailed case studies on efforts, and their impact, that integrate experiment and computation to solve an enduring engineering problem in materials and manufacturing.