High-Resolution Simulation of the Near-Field Pollutant Dispersion in a Nuclear Power Plant Community with High-Performance Computing

IF 1.4 4区 物理与天体物理 Q2 MATHEMATICS, APPLIED
Bowen Tang, Hao Wang, Jianjun Xu, Jiazhen Lin, Jinxing Hu, Rongliang Chen
{"title":"High-Resolution Simulation of the Near-Field Pollutant Dispersion in a Nuclear Power Plant Community with High-Performance Computing","authors":"Bowen Tang, Hao Wang, Jianjun Xu, Jiazhen Lin, Jinxing Hu, Rongliang Chen","doi":"10.1007/s44198-024-00171-7","DOIUrl":null,"url":null,"abstract":"<p>This study aims to employ numerical simulations to understand the dynamics of wind fields and air pollutant dispersion in the proximity of a nuclear plant, situated within a specified urban environment. By leveraging computational fluid dynamics (CFD) combined with geographical information system (GIS) data, the research comprehensively models atmospheric interactions in terms of wind flow patterns, building-induced pressure variances, and pollutant trajectories. The computational domain extends over an area of <span>\\(8.8\\,\\textrm{km} \\times 8.4\\,\\textrm{km}\\)</span>, vertically stretching to 0.5 km. The wind and pollutant distribution equations are discretized using the finite volume method, providing detailed insights into fluid interactions with urban topographies. Key findings highlight the profound influences of terrain, urban structures, and wind flow behavior on the dispersion of radioactive aerosols, shedding light on potential risks and safety protocols for nuclear plant environments.</p>","PeriodicalId":48904,"journal":{"name":"Journal of Nonlinear Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s44198-024-00171-7","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to employ numerical simulations to understand the dynamics of wind fields and air pollutant dispersion in the proximity of a nuclear plant, situated within a specified urban environment. By leveraging computational fluid dynamics (CFD) combined with geographical information system (GIS) data, the research comprehensively models atmospheric interactions in terms of wind flow patterns, building-induced pressure variances, and pollutant trajectories. The computational domain extends over an area of \(8.8\,\textrm{km} \times 8.4\,\textrm{km}\), vertically stretching to 0.5 km. The wind and pollutant distribution equations are discretized using the finite volume method, providing detailed insights into fluid interactions with urban topographies. Key findings highlight the profound influences of terrain, urban structures, and wind flow behavior on the dispersion of radioactive aerosols, shedding light on potential risks and safety protocols for nuclear plant environments.

Abstract Image

利用高性能计算高分辨率模拟核电站群落近场污染物扩散
本研究旨在利用数值模拟来了解位于特定城市环境中的核电厂附近的风场和空气污染物扩散动态。通过利用计算流体动力学(CFD)和地理信息系统(GIS)数据,该研究从风流模式、建筑物引起的压力变化和污染物轨迹等方面全面模拟了大气相互作用。计算域的范围为(8.8\textrm{km} \times 8.4\textrm{km}),垂直方向延伸至 0.5 km。风和污染物分布方程采用有限体积法离散化,为流体与城市地形的相互作用提供了详尽的见解。主要发现强调了地形、城市结构和风流行为对放射性气溶胶扩散的深刻影响,揭示了核电厂环境的潜在风险和安全协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nonlinear Mathematical Physics
Journal of Nonlinear Mathematical Physics PHYSICS, MATHEMATICAL-PHYSICS, MATHEMATICAL
CiteScore
1.60
自引率
0.00%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Nonlinear Mathematical Physics (JNMP) publishes research papers on fundamental mathematical and computational methods in mathematical physics in the form of Letters, Articles, and Review Articles. Journal of Nonlinear Mathematical Physics is a mathematical journal devoted to the publication of research papers concerned with the description, solution, and applications of nonlinear problems in physics and mathematics. The main subjects are: -Nonlinear Equations of Mathematical Physics- Quantum Algebras and Integrability- Discrete Integrable Systems and Discrete Geometry- Applications of Lie Group Theory and Lie Algebras- Non-Commutative Geometry- Super Geometry and Super Integrable System- Integrability and Nonintegrability, Painleve Analysis- Inverse Scattering Method- Geometry of Soliton Equations and Applications of Twistor Theory- Classical and Quantum Many Body Problems- Deformation and Geometric Quantization- Instanton, Monopoles and Gauge Theory- Differential Geometry and Mathematical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信