Monotonicity and convexity (concavity) properties for zero-balanced hypergeometric function

Tie-Hong Zhao, Miao-Kun Wang
{"title":"Monotonicity and convexity (concavity) properties for zero-balanced hypergeometric function","authors":"Tie-Hong Zhao, Miao-Kun Wang","doi":"10.1007/s13398-024-01555-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, for a suitable region of (<i>a</i>, <i>b</i>), we establish a necessary and sufficient condition of <span>\\(p&gt;0\\)</span> such that </p><span>$$\\begin{aligned} x\\mapsto \\frac{\\log (p/\\sqrt{1-x})}{F(a,b;a+b;x)} \\end{aligned}$$</span><p>is strictly monotonic, convex, or concave on (0, 1), where <span>\\(F(a,b;a+b;x)\\)</span> represents the zero-balanced hypergeometric function. This extends the recently obtained corresponding results for the cases that <span>\\(a=b=1/2\\)</span>. As applications, several functional inequalities involving zero-balanced hypergeometric function will be obtained.</p>","PeriodicalId":21293,"journal":{"name":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","volume":"297 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13398-024-01555-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, for a suitable region of (ab), we establish a necessary and sufficient condition of \(p>0\) such that

$$\begin{aligned} x\mapsto \frac{\log (p/\sqrt{1-x})}{F(a,b;a+b;x)} \end{aligned}$$

is strictly monotonic, convex, or concave on (0, 1), where \(F(a,b;a+b;x)\) represents the zero-balanced hypergeometric function. This extends the recently obtained corresponding results for the cases that \(a=b=1/2\). As applications, several functional inequalities involving zero-balanced hypergeometric function will be obtained.

Abstract Image

零平衡超几何函数的单调性和凸性(凹性)性质
在本文中,对于一个合适的(a, b)区域,我们建立了一个必要且充分的条件(p>0\),使得 $$\begin{aligned} x\mapsto \frac{log (p/\sqrt{1-x})}{F(a,b. a+b;x)} \end{aligned}$在(0, 1)上是严格单调的、凸的或凹的;这扩展了最近获得的针对 \(a=b=1/2\)情况的相应结果。作为应用,将得到几个涉及零平衡超几何函数的函数不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信