Domain Decomposition Methods for Diffusion Problems with Discontinuous Coefficients Revisited

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xuyang Na, Xuejun Xu
{"title":"Domain Decomposition Methods for Diffusion Problems with Discontinuous Coefficients Revisited","authors":"Xuyang Na, Xuejun Xu","doi":"10.4208/cicp.oa-2023-0184","DOIUrl":null,"url":null,"abstract":"In this paper, we revisit some nonoverlapping domain decomposition methods for solving diffusion problems with discontinuous coefficients. We discover some\ninteresting phenomena, that is, the Dirichlet-Neumann algorithm and Robin-Robin algorithms may make full use of the ratio of coefficients in some special cases. Detailedly,\nin the case of two subdomains, we find that their convergence rates are $\\mathcal{O}(ν_1/ν_2)$ if $ν_1 < ν_2,$ where $ν_1, \\ ν_2$ are coefficients of two subdomains. Moreover, in the case of\nmany subdomains with red-black partition, the condition number bounds of Dirichlet-Neumann algorithm and Robin-Robin algorithm are $1+\\epsilon(1+{\\rm log}(H/h))^2$ and $C+\\epsilon(1+ {\\rm log}(H/h))^2,$ respectively, where $\\epsilon$ equals ${\\rm min}\\{ν_R/ν_B,ν_B/ν_R\\}$ and $ν_R,ν_B$ are the coefficients of red and black domains. By contrast, Neumann-Neumann algorithm and\nDirichlet-Dirichlet algorithm could not obtain such good convergence results in these\ncases. Finally, numerical experiments are preformed to confirm our findings.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0184","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we revisit some nonoverlapping domain decomposition methods for solving diffusion problems with discontinuous coefficients. We discover some interesting phenomena, that is, the Dirichlet-Neumann algorithm and Robin-Robin algorithms may make full use of the ratio of coefficients in some special cases. Detailedly, in the case of two subdomains, we find that their convergence rates are $\mathcal{O}(ν_1/ν_2)$ if $ν_1 < ν_2,$ where $ν_1, \ ν_2$ are coefficients of two subdomains. Moreover, in the case of many subdomains with red-black partition, the condition number bounds of Dirichlet-Neumann algorithm and Robin-Robin algorithm are $1+\epsilon(1+{\rm log}(H/h))^2$ and $C+\epsilon(1+ {\rm log}(H/h))^2,$ respectively, where $\epsilon$ equals ${\rm min}\{ν_R/ν_B,ν_B/ν_R\}$ and $ν_R,ν_B$ are the coefficients of red and black domains. By contrast, Neumann-Neumann algorithm and Dirichlet-Dirichlet algorithm could not obtain such good convergence results in these cases. Finally, numerical experiments are preformed to confirm our findings.
再论非连续系数扩散问题的领域分解方法
在本文中,我们重新探讨了一些用于求解非连续系数扩散问题的非重叠域分解方法。我们发现了一些有趣的现象,即在某些特殊情况下,Dirichlet-Neumann 算法和 Robin-Robin 算法可以充分利用系数比。具体来说,在两个子域的情况下,我们发现如果$ν_1 < ν_2,其中$ν_1, \ ν_2$是两个子域的系数,那么它们的收敛率为$\mathcal{O}(ν_1/ν_2)$。此外,在多个子域红黑分区的情况下,Dirichlet-Neumann 算法和 Robin-Robin 算法的条件数边界分别为 $1+\epsilon(1+{\rm log}(H/h))^2$ 和 $C+\epsilon(1+{\rm log}(H/h))^2、分别等于 ${rm min}\{ν_R/ν_B,ν_B/ν_R\}$ 和 $ν_R,ν_B$ 是红域和黑域的系数。相比之下,Neumann-Neumann 算法和 Dirichlet-Dirichlet 算法在这些情况下无法获得如此好的收敛结果。最后,我们通过数值实验证实了我们的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信