Judith M. Hollander, Alex Goraltchouk, Jingshu Liu, Ellyn Xu, Francesco Luppino, Timothy E. McAlindon, Li Zeng, Alexey Seregin
{"title":"Single Injection AAV2-FGF18 Gene Therapy Reduces Cartilage Loss and Subchondral Bone Damage in a Mechanically Induced Model of Osteoarthritis","authors":"Judith M. Hollander, Alex Goraltchouk, Jingshu Liu, Ellyn Xu, Francesco Luppino, Timothy E. McAlindon, Li Zeng, Alexey Seregin","doi":"10.2174/0115665232275532231213063634","DOIUrl":null,"url":null,"abstract":"Background:: Osteoarthritis (OA) is a highly debilitating, degenerative pathology of cartilaginous joints affecting over 500 million people worldwide. The global economic burden of OA is estimated at $260-519 billion and growing, driven by aging global population and increasing rates of obesity. To date, only the multi-injection chondroanabolic treatment regimen of Fibroblast Growth Factor 18 (FGF18) has demonstrated clinically meaningful disease-modifying efficacy in placebo-controlled human trials. Our work focuses on the development of a novel single injection disease-modifying gene therapy, based on FGF18’s chondroanabolic activity. Methods:: OA was induced in Sprague-Dawley rats using destabilization of the medial meniscus (DMM) (3 weeks), followed by intra-articular treatment with 3 dose levels of AAV2-FGF18, rh- FGF18 protein, and PBS. Durability, redosability, and biodistribution were measured by quantifying nLuc reporter bioluminescence. Transcriptomic analysis was performed by RNA-seq on cultured human chondrocytes and rat knee joints. Morphological analysis was performed on knee joints stained with Safranin O/Fast Green and anti-PRG antibody. Results:: Dose-dependent reductions in cartilage defect size were observed in the AAV2-FGF18- treated joints relative to the vehicle control. Total defect width was reduced by up to 76% and cartilage thickness in the thinnest zone was increased by up to 106%. Morphologically, the vehicle- treated joints exhibited pronounced degeneration, ranging from severe cartilage erosion and bone void formation, to subchondral bone remodeling and near-complete subchondral bone collapse. In contrast, AAV2-FGF18-treated joints appeared more anatomically normal, with only regional glycosaminoglycan loss and marginal cartilage erosion. While effective at reducing cartilage lesions, treatment with rhFGF18 injections resulted in significant joint swelling (19% increase in diameter), as well as a decrease in PRG4 staining uniformity and intensity. In contrast to early-timepoint in vitro RNA-seq analysis, which showed a high degree of concordance between protein- and gene therapy-treated chondrocytes, in vivo transcriptomic analysis, revealed few gene expression changes following protein treatment. On the other hand, the gene therapy treatment exhibited a high degree of durability and localization over the study period, upregulating several chondroanabolic genes while downregulating OA- and fibrocartilage-associated markers. Conclusion:: FGF18 gene therapy treatment of OA joints can provide benefits to both cartilage and subchondral bone, with a high degree of localization and durability.","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232275532231213063634","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background:: Osteoarthritis (OA) is a highly debilitating, degenerative pathology of cartilaginous joints affecting over 500 million people worldwide. The global economic burden of OA is estimated at $260-519 billion and growing, driven by aging global population and increasing rates of obesity. To date, only the multi-injection chondroanabolic treatment regimen of Fibroblast Growth Factor 18 (FGF18) has demonstrated clinically meaningful disease-modifying efficacy in placebo-controlled human trials. Our work focuses on the development of a novel single injection disease-modifying gene therapy, based on FGF18’s chondroanabolic activity. Methods:: OA was induced in Sprague-Dawley rats using destabilization of the medial meniscus (DMM) (3 weeks), followed by intra-articular treatment with 3 dose levels of AAV2-FGF18, rh- FGF18 protein, and PBS. Durability, redosability, and biodistribution were measured by quantifying nLuc reporter bioluminescence. Transcriptomic analysis was performed by RNA-seq on cultured human chondrocytes and rat knee joints. Morphological analysis was performed on knee joints stained with Safranin O/Fast Green and anti-PRG antibody. Results:: Dose-dependent reductions in cartilage defect size were observed in the AAV2-FGF18- treated joints relative to the vehicle control. Total defect width was reduced by up to 76% and cartilage thickness in the thinnest zone was increased by up to 106%. Morphologically, the vehicle- treated joints exhibited pronounced degeneration, ranging from severe cartilage erosion and bone void formation, to subchondral bone remodeling and near-complete subchondral bone collapse. In contrast, AAV2-FGF18-treated joints appeared more anatomically normal, with only regional glycosaminoglycan loss and marginal cartilage erosion. While effective at reducing cartilage lesions, treatment with rhFGF18 injections resulted in significant joint swelling (19% increase in diameter), as well as a decrease in PRG4 staining uniformity and intensity. In contrast to early-timepoint in vitro RNA-seq analysis, which showed a high degree of concordance between protein- and gene therapy-treated chondrocytes, in vivo transcriptomic analysis, revealed few gene expression changes following protein treatment. On the other hand, the gene therapy treatment exhibited a high degree of durability and localization over the study period, upregulating several chondroanabolic genes while downregulating OA- and fibrocartilage-associated markers. Conclusion:: FGF18 gene therapy treatment of OA joints can provide benefits to both cartilage and subchondral bone, with a high degree of localization and durability.
期刊介绍:
Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases.
Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.