Construction of high-dimensional high-separation distance designs

Pub Date : 2024-02-01 DOI:10.1016/j.jspi.2024.106150
Xu He , Fasheng Sun
{"title":"Construction of high-dimensional high-separation distance designs","authors":"Xu He ,&nbsp;Fasheng Sun","doi":"10.1016/j.jspi.2024.106150","DOIUrl":null,"url":null,"abstract":"<div><p>Space-filling designs that possess high separation distance are useful for computer experiments. We propose a novel method to construct high-dimensional high-separation distance designs. The construction involves taking the Kronecker product of sub-Hadamard matrices and rotation. In addition to possessing better separation distance than most existing types of space-filling designs, our newly proposed designs enjoy orthogonality and projection uniformity and are more flexible in the numbers of runs and factors than that from most algebraic constructions. From numerical results, such designs are excellent in Gaussian process emulation of high-dimensional computer experiments. An R package on design construction is available online.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Space-filling designs that possess high separation distance are useful for computer experiments. We propose a novel method to construct high-dimensional high-separation distance designs. The construction involves taking the Kronecker product of sub-Hadamard matrices and rotation. In addition to possessing better separation distance than most existing types of space-filling designs, our newly proposed designs enjoy orthogonality and projection uniformity and are more flexible in the numbers of runs and factors than that from most algebraic constructions. From numerical results, such designs are excellent in Gaussian process emulation of high-dimensional computer experiments. An R package on design construction is available online.

分享
查看原文
构建高维高分离距离设计
具有高分离距离的空间填充设计对计算机实验非常有用。我们提出了一种构建高维高分离距离设计的新方法。这种构建方法涉及子哈达玛矩阵的克朗内克乘积和旋转。与大多数现有的空间填充设计相比,我们新提出的设计除了具有更好的分离距离外,还具有正交性和投影均匀性,并且在运行数和因子数方面比大多数代数构造更加灵活。从数值结果来看,这种设计在高维计算机实验的高斯过程仿真中表现出色。有关设计构造的 R 软件包可在线获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信