Seismic performance of HWBBF considering different design methods and structural heights

IF 2.9 3区 工程技术 Q2 ENGINEERING, CIVIL
Yulong Feng, Zhi Zhang, Zuanfeng Pan
{"title":"Seismic performance of HWBBF considering different design methods and structural heights","authors":"Yulong Feng, Zhi Zhang, Zuanfeng Pan","doi":"10.1007/s11709-023-0020-z","DOIUrl":null,"url":null,"abstract":"<p>Previous research has shown that using buckling-restrained braces (BRBs) at hinged wall (HW) base (HWBB) can effectively mitigate lateral deformation of steel moment-resisting frames (MRFs) in earthquakes. Force-based and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods, in terms of design steps, advantages/disadvantages, and structure responses. In addition, this paper investigates the building height below which the HW seismic moment demand can be properly controlled. First, 3-story, 9-story, and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs. Secondly, HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods, called HWFs and HWBBFs, respectively. Thirdly, nonlinear time history analyses are conducted to compare the structural responses of the MRFs, HWBBFs and HWFs in earthquakes. The results show the following. 1) HW seismic force demands increase as structural height increases, which may lead to uneconomical HW design. The HW seismic moment demand can be properly controlled when the building is lower than nine stories. 2) The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process, as well as better achieving the design target displacement.</p>","PeriodicalId":12476,"journal":{"name":"Frontiers of Structural and Civil Engineering","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Structural and Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11709-023-0020-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Previous research has shown that using buckling-restrained braces (BRBs) at hinged wall (HW) base (HWBB) can effectively mitigate lateral deformation of steel moment-resisting frames (MRFs) in earthquakes. Force-based and displacement-based design methods have been proposed to design HWBB to strengthen steel MRF and this paper comprehensively compares these two design methods, in terms of design steps, advantages/disadvantages, and structure responses. In addition, this paper investigates the building height below which the HW seismic moment demand can be properly controlled. First, 3-story, 9-story, and 20-story steel MRFs in the SAC project are used as benchmark steel MRFs. Secondly, HWs and HWBBs are designed to strengthen the benchmark steel MRFs using force-based and displacement-based methods, called HWFs and HWBBFs, respectively. Thirdly, nonlinear time history analyses are conducted to compare the structural responses of the MRFs, HWBBFs and HWFs in earthquakes. The results show the following. 1) HW seismic force demands increase as structural height increases, which may lead to uneconomical HW design. The HW seismic moment demand can be properly controlled when the building is lower than nine stories. 2) The displacement-based design method is recommended due to the benefit of identifying unfeasible component dimensions during the design process, as well as better achieving the design target displacement.

考虑不同设计方法和结构高度的 HWBBF 抗震性能
以往的研究表明,在铰链墙(HW)基座(HWBB)上使用屈曲约束支撑(BRB)可以有效地减轻钢制矩形抗力框架(MRF)在地震中的侧向变形。本文从设计步骤、优缺点和结构响应等方面全面比较了这两种设计方法。此外,本文还研究了可适当控制 HW 地震力矩需求的建筑高度。首先,将 SAC 项目中的 3 层、9 层和 20 层钢结构 MRF 作为基准钢结构 MRF。其次,采用基于力和基于位移的方法设计 HWs 和 HWBBs,分别称为 HWFs 和 HWBBFs,以加固基准钢 MRF。第三,进行非线性时间历程分析,比较 MRFs、HWBBFs 和 HWFs 在地震中的结构响应。结果显示如下1) HW 地震力需求随着结构高度的增加而增加,这可能导致 HW 设计不经济。当建筑物低于九层时,HW 地震力矩需求可以得到适当控制。2) 基于位移的设计方法可在设计过程中识别不可行的构件尺寸,并更好地实现设计目标位移,因此值得推荐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.20
自引率
3.30%
发文量
734
期刊介绍: Frontiers of Structural and Civil Engineering is an international journal that publishes original research papers, review articles and case studies related to civil and structural engineering. Topics include but are not limited to the latest developments in building and bridge structures, geotechnical engineering, hydraulic engineering, coastal engineering, and transport engineering. Case studies that demonstrate the successful applications of cutting-edge research technologies are welcome. The journal also promotes and publishes interdisciplinary research and applications connecting civil engineering and other disciplines, such as bio-, info-, nano- and social sciences and technology. Manuscripts submitted for publication will be subject to a stringent peer review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信