{"title":"Experimental and Numerical Investigations of the Noise Induced by Cavitation in a Centrifugal Pump","authors":"","doi":"10.1007/s40997-023-00749-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The noise induced by cavitation in a centrifugal pump is investigated by collecting the noise of the centrifugal pump under different available net positive suction heads (<em>NPSH</em>a) in the rated flow through experiments. Experimental results are combined with numerical calculations to establish the relationship between cavitation degrees and noise. Firstly, the collected noise signal is denoised using the independent component analysis (ICA) method, and combined with time domain, Fast Fourier transform (FFT), wavelet transform (WT), and spectral proper orthogonal decomposition (SPOD) methods to analyse the characteristics of cavitation noise signal after noise reduction. After being denoised by ICA, the noise signal can effectively reflect the inception and development of cavitation. In the frequency domain, the typical frequency band of noise induced by cavitation is 2 ~ 8 kHz. During severe cavitation, the amplitude of the shaft and blade frequency in the low-frequency band (0 ~ 600 Hz) gradually decreases until they become low-frequency broadband signals. In the time–frequency domain, when cavitation develops to an unstable cavitation state, the 0 ~ 1 kHz noise amplitude fluctuates irregularly. Finally, the coherent structure of cavitation noise feature signals is established using the SPOD method. Higher-order modes 3 and 4 can capture the characteristic changes of the centrifugal pump cavitation noise at different <em>NPSH</em>a.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40997-023-00749-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The noise induced by cavitation in a centrifugal pump is investigated by collecting the noise of the centrifugal pump under different available net positive suction heads (NPSHa) in the rated flow through experiments. Experimental results are combined with numerical calculations to establish the relationship between cavitation degrees and noise. Firstly, the collected noise signal is denoised using the independent component analysis (ICA) method, and combined with time domain, Fast Fourier transform (FFT), wavelet transform (WT), and spectral proper orthogonal decomposition (SPOD) methods to analyse the characteristics of cavitation noise signal after noise reduction. After being denoised by ICA, the noise signal can effectively reflect the inception and development of cavitation. In the frequency domain, the typical frequency band of noise induced by cavitation is 2 ~ 8 kHz. During severe cavitation, the amplitude of the shaft and blade frequency in the low-frequency band (0 ~ 600 Hz) gradually decreases until they become low-frequency broadband signals. In the time–frequency domain, when cavitation develops to an unstable cavitation state, the 0 ~ 1 kHz noise amplitude fluctuates irregularly. Finally, the coherent structure of cavitation noise feature signals is established using the SPOD method. Higher-order modes 3 and 4 can capture the characteristic changes of the centrifugal pump cavitation noise at different NPSHa.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.