The role of the local structural properties in the electrochemical characteristics of Na1-xFe1-yNiyO2 cathodes

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Wojciech Olszewski, Sourav Baiju, Payam Kaghazchi, Carlo Marini, Benoit Mortemard de Boisse, Masashi Okubo, Atsuo Yamada, Takashi Mizokawa, Naurang Lal Saini, Laura Simonelli
{"title":"The role of the local structural properties in the electrochemical characteristics of Na1-xFe1-yNiyO2 cathodes","authors":"Wojciech Olszewski, Sourav Baiju, Payam Kaghazchi, Carlo Marini, Benoit Mortemard de Boisse, Masashi Okubo, Atsuo Yamada, Takashi Mizokawa, Naurang Lal Saini, Laura Simonelli","doi":"10.1016/j.mtener.2024.101519","DOIUrl":null,"url":null,"abstract":"<p>The natural abundance of sodium makes the Na-ion batteries (SIBs) attractive devices in the framework of a global economy change toward net zero CO<sub>2</sub> emission. SIBs naturally deliver relatively lower energy density respect to Li-ion counterparts (LiBs), however, their lower cost and fast charge/discharge-ability make them a promising competitor to LiBs to load level the intermittent power from renewable energy sources for smart grids or renewable power stations. The O3-type NaFeO<sub>2</sub> is a promising candidate for SIBs cathodes, even if the irreversible structural transition occurring during Na-ion extraction/insertion seriously hinders its practical application. Partial replacement of Fe by Ni significantly improves its electrochemical properties. The possible reasons of such improvement are here investigated accessing the details on the Fe and Ni local electronic and structural properties by means of x-ray absorption spectroscopy and spin-polarized DFT calculations. Different Ni concentrations and charge states have been analysed. The results support the stability of the electronic properties of Fe and Ni as a function of cycling in partially substituted system. Instead, the local structure is affected by the Fe substitution as well by the charge/discharge cycling. In particular, the decrease of Fe-O covalency and the local disorder by partial substitution Fe by Ni seems at the origin of the improved performances.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"9 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101519","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The natural abundance of sodium makes the Na-ion batteries (SIBs) attractive devices in the framework of a global economy change toward net zero CO2 emission. SIBs naturally deliver relatively lower energy density respect to Li-ion counterparts (LiBs), however, their lower cost and fast charge/discharge-ability make them a promising competitor to LiBs to load level the intermittent power from renewable energy sources for smart grids or renewable power stations. The O3-type NaFeO2 is a promising candidate for SIBs cathodes, even if the irreversible structural transition occurring during Na-ion extraction/insertion seriously hinders its practical application. Partial replacement of Fe by Ni significantly improves its electrochemical properties. The possible reasons of such improvement are here investigated accessing the details on the Fe and Ni local electronic and structural properties by means of x-ray absorption spectroscopy and spin-polarized DFT calculations. Different Ni concentrations and charge states have been analysed. The results support the stability of the electronic properties of Fe and Ni as a function of cycling in partially substituted system. Instead, the local structure is affected by the Fe substitution as well by the charge/discharge cycling. In particular, the decrease of Fe-O covalency and the local disorder by partial substitution Fe by Ni seems at the origin of the improved performances.

Abstract Image

局部结构特性在 Na1-xFe1-yNiyO2 阴极电化学特性中的作用
钠的天然丰富性使得钠离子电池(SIB)成为全球经济向二氧化碳净零排放转变过程中极具吸引力的设备。与锂离子电池(LiBs)相比,钠离子电池(SIBs)的能量密度相对较低,但其较低的成本和快速充放电能力使其成为锂离子电池的有力竞争者,可为智能电网或可再生发电站提供来自可再生能源的间歇性电力。O3 型 NaFeO2 是 SIBs 阴极的理想候选材料,尽管在萃取/插入 Na 离子过程中发生的不可逆结构转变严重阻碍了它的实际应用。用镍部分取代铁能显著改善其电化学性能。本文通过 X 射线吸收光谱和自旋极化 DFT 计算,详细研究了铁和镍的局部电子和结构特性,并探讨了这种改善的可能原因。对不同的镍浓度和电荷状态进行了分析。结果表明,在部分取代体系中,随着循环的进行,铁和镍的电子特性保持稳定。相反,局部结构受到了铁的替代以及充放电循环的影响。特别是,镍部分取代铁后,Fe-O 共价性和局部无序性降低,这似乎是性能提高的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信