Any oriented non-closed connected $4$-manifold can be spread holomorphically over the complex projective plane minus a point

IF 0.5 4区 数学 Q3 MATHEMATICS
Dennis Sullivan
{"title":"Any oriented non-closed connected $4$-manifold can be spread holomorphically over the complex projective plane minus a point","authors":"Dennis Sullivan","doi":"10.4310/pamq.2023.v19.n6.a11","DOIUrl":null,"url":null,"abstract":"$\\def\\spinc{\\operatorname{spin}^\\mathrm{c}}$We give a 1965 era proof of the title assuming $M$ is $\\spinc$. The fact that any oriented four manifold is $\\spinc$ is a challenging result from 1995 whose interesting argument by Teichner–Vogt is analyzed and used in the appendix to show an analogous integral lift result about the top Wu class in $\\dim 4k$. This will be used in future work to study related complex structures on higher dimensional open manifolds.","PeriodicalId":54526,"journal":{"name":"Pure and Applied Mathematics Quarterly","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Mathematics Quarterly","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/pamq.2023.v19.n6.a11","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

$\def\spinc{\operatorname{spin}^\mathrm{c}}$We give a 1965 era proof of the title assuming $M$ is $\spinc$. The fact that any oriented four manifold is $\spinc$ is a challenging result from 1995 whose interesting argument by Teichner–Vogt is analyzed and used in the appendix to show an analogous integral lift result about the top Wu class in $\dim 4k$. This will be used in future work to study related complex structures on higher dimensional open manifolds.
任何定向的非封闭连通 $4$-manifold 都可以在复投影面上全形展开,减去一个点
$def\spinc{operatorname{spin}^\mathrm{c}}$我们给出了 1965 年假设 $M$ 是 $\spinc$ 的证明。任何有向四流形都是 $\spinc$ 是 1995 年的一个挑战性结果,我们在附录中分析并使用了 Teichner-Vogt 的有趣论证,以展示关于 $\dim 4k$ 中顶吴类的类似积分提升结果。这将在未来的工作中用于研究高维开流形上的相关复杂结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: Publishes high-quality, original papers on all fields of mathematics. To facilitate fruitful interchanges between mathematicians from different regions and specialties, and to effectively disseminate new breakthroughs in mathematics, the journal welcomes well-written submissions from all significant areas of mathematics. The editors are committed to promoting the highest quality of mathematical scholarship.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信