Menaha Dhanraj, Arul Joseph Gnanaprakasam, Santosh Kumar
{"title":"Solving integral equations via orthogonal hybrid interpolative RI-type contractions","authors":"Menaha Dhanraj, Arul Joseph Gnanaprakasam, Santosh Kumar","doi":"10.1186/s13663-023-00759-6","DOIUrl":null,"url":null,"abstract":"In this paper, we initiate the fixed point theorems for an orthogonal hybrid interpolative Riech Istrastescus type contractions map on orthogonal b-metric spaces to modify this class proficiently. Also, we provide some examples supporting our main results. Finally, we provide an application to solve the existence and uniqueness of an integral equation with numeric results, which is powerful in a greater way.","PeriodicalId":12293,"journal":{"name":"Fixed Point Theory and Applications","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed Point Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-023-00759-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we initiate the fixed point theorems for an orthogonal hybrid interpolative Riech Istrastescus type contractions map on orthogonal b-metric spaces to modify this class proficiently. Also, we provide some examples supporting our main results. Finally, we provide an application to solve the existence and uniqueness of an integral equation with numeric results, which is powerful in a greater way.
期刊介绍:
In a wide range of mathematical, computational, economical, modeling and engineering problems, the existence of a solution to a theoretical or real world problem is equivalent to the existence of a fixed point for a suitable map or operator. Fixed points are therefore of paramount importance in many areas of mathematics, sciences and engineering.
The theory itself is a beautiful mixture of analysis (pure and applied), topology and geometry. Over the last 60 years or so, the theory of fixed points has been revealed as a very powerful and important tool in the study of nonlinear phenomena. In particular, fixed point techniques have been applied in such diverse fields as biology, chemistry, physics, engineering, game theory and economics.
In numerous cases finding the exact solution is not possible; hence it is necessary to develop appropriate algorithms to approximate the requested result. This is strongly related to control and optimization problems arising in the different sciences and in engineering problems. Many situations in the study of nonlinear equations, calculus of variations, partial differential equations, optimal control and inverse problems can be formulated in terms of fixed point problems or optimization.