Bayesian tensor-on-tensor regression with efficient computation

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Kunbo Wang, Yanxun Xu
{"title":"Bayesian tensor-on-tensor regression with efficient computation","authors":"Kunbo Wang, Yanxun Xu","doi":"10.4310/23-sii786","DOIUrl":null,"url":null,"abstract":"We propose a Bayesian tensor-on-tensor regression approach to predict a multidimensional array (tensor) of arbitrary dimensions from another tensor of arbitrary dimensions, building upon the Tucker decomposition of the regression coefficient tensor. Traditional tensor regression methods making use of the Tucker decomposition either assume the dimension of the core tensor to be known or estimate it via cross-validation or some model selection criteria. However, no existing method can simultaneously estimate the model dimension (the dimension of the core tensor) and other model parameters. To fill this gap, we develop an efficient Markov Chain Monte Carlo (MCMC) algorithm to estimate both the model dimension and parameters for posterior inference. Besides the MCMC sampler, we also develop an ultra-fast optimization-based computing algorithm wherein the maximum <i>a posteriori</i> estimators for parameters are computed, and the model dimension is optimized via a simulated annealing algorithm. The proposed Bayesian framework provides a natural way for uncertainty quantification. Through extensive simulation studies, we evaluate the proposed Bayesian tensor-on-tensor regression model and show its superior performance compared to alternative methods. We also demonstrate its practical effectiveness by applying it to two real-world datasets, including facial imaging data and 3D motion data.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"23 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/23-sii786","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a Bayesian tensor-on-tensor regression approach to predict a multidimensional array (tensor) of arbitrary dimensions from another tensor of arbitrary dimensions, building upon the Tucker decomposition of the regression coefficient tensor. Traditional tensor regression methods making use of the Tucker decomposition either assume the dimension of the core tensor to be known or estimate it via cross-validation or some model selection criteria. However, no existing method can simultaneously estimate the model dimension (the dimension of the core tensor) and other model parameters. To fill this gap, we develop an efficient Markov Chain Monte Carlo (MCMC) algorithm to estimate both the model dimension and parameters for posterior inference. Besides the MCMC sampler, we also develop an ultra-fast optimization-based computing algorithm wherein the maximum a posteriori estimators for parameters are computed, and the model dimension is optimized via a simulated annealing algorithm. The proposed Bayesian framework provides a natural way for uncertainty quantification. Through extensive simulation studies, we evaluate the proposed Bayesian tensor-on-tensor regression model and show its superior performance compared to alternative methods. We also demonstrate its practical effectiveness by applying it to two real-world datasets, including facial imaging data and 3D motion data.
高效计算的贝叶斯张量对张量回归
我们提出了一种贝叶斯张量对张量回归方法,以回归系数张量的塔克分解为基础,从另一个任意维度的张量中预测任意维度的多维阵列(张量)。利用塔克分解的传统张量回归方法要么假定核心张量的维度是已知的,要么通过交叉验证或某些模型选择标准来估计。然而,目前还没有一种方法能同时估计模型维度(核心张量的维度)和其他模型参数。为了填补这一空白,我们开发了一种高效的马尔可夫链蒙特卡罗(MCMC)算法,用于估计模型维度和参数,以进行后验推断。除了 MCMC 采样器之外,我们还开发了一种基于优化的超快速计算算法,通过该算法计算参数的最大后验估计值,并通过模拟退火算法优化模型维度。所提出的贝叶斯框架为不确定性量化提供了一种自然的方法。通过广泛的模拟研究,我们对所提出的贝叶斯张量对张量回归模型进行了评估,结果表明,与其他方法相比,该模型性能优越。我们还将其应用于两个真实世界的数据集,包括面部成像数据和三维运动数据,从而证明了它的实际效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信